Kenneykondrup0862

Z Iurium Wiki

In order to obtain a multifunctional nanocomposite material-for electrochemical sensors and photocatalytic applications, structures based on Bi, Fe and TiO₂ were grown inside carbon xerogel supports (BiFeCX and BiFeCX-TiO₂). First, a wet polymer containing Bi and Fe salts was obtained by following a modified resorcinol-formaldehyde based sol-gel route, followed by drying in ambient conditions, and pyrolysis under inert atmosphere. Then, through TiCl₄ hydrolysis, TiO₂ nanoparticles were deposited on the BiFeCX xerogel leading to BiFeCX-TiO₂. RG7388 datasheet The morphological and structural characterization of the investigated nanocomposites consisted in X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and N₂ adsorption measurements, revealing porous carbon structures with embedded nanoparticles and the particularities driven by the pyrolysis and TiCl₄ treatment. The new modified electrodes based on BiFeCX or BiFeCX-TiO₂ nanocomposite materials, kept in a chitosan matrix (Chi) and deposited on a glassy carbon (GC) electrode surface (GC/Chi-BiFeCX or GC/Chi-BiFeCX-TiO₂), were obtained and investigated for Pb(II) voltammetric detection and H₂O₂ amperometric detection. Moreover, the BiFeCX-TiO₂ nanocomposite was tested for the photocatalytic degradation of methyl orange. The great potential of BiFeCX nanocomposite material for developing electrochemical sensors, or BiFeCX-TiO₂ for sensors application and photocatalytic application was demonstrated.Looking for multifunctional materials, an assessment of the performances both as fire retardant and generator of electrically conductive surfaces for a three component mixture of graphene oxide, phosphoric acid and melamine applied on wood chipboard was performed. A simple approach was used to investigate the intumescent char formation and quantify the loss mass during vertical burning tests, in which the prepared samples were exposed for a certain time interval to a flame generated by an ethanol lamp in ambient conditions. Moreover, mass loss evolution and structural changes that occur during the burning process were more comprehensive investigated by differential thermal and thermogravimetric (DTA/TGA) techniques. By comparing the performances between the wood chipboard samples without any coverage and those covered with one or multiple component mixture, an increase of protection against the fire action was noticed when the three component mixture was used. Also, an improvement of the electrical properties was observed, after flame exposure of the samples covered with multiple layers (i.e., two and three), when the three component mixture was used. Morphological and structural investigations by microscopy (optical and electronic-SEMEDX), X-ray diffraction (XRD) and spectral (Raman, FTIR) methods are described. An assessment of market potential is also discussed.The azathioprine (AZA) electrochemical adsorption onto the screen-printed carbon electrodes (SPCE) modified with the reduced graphene oxide (RGO) sheets in the absence and in the presence of polyaniline-emeraldine salt (PANI-ES) is reported in this work. Using cyclic voltammetry (CV), in the case of the SPCE modified with the RGO sheets non-functionalized and functionalized with PANI-ES, respectively, an irreversible process at the electrode/electrolyte interface is highlighted to take place. In the case of the SPCE modified with the non-functionalized RGO sheets (SPCERGO), the oxidation-reduction processes induce an up-shift of the AZA Raman lines from 856 and 1011 cm-1 to 863 and 1020 cm-1, respectively. These variations indicate an AZA adsorption onto the surface of the SPCE modified with the RGO sheets that takes place throught the imidazole and pyrimidine cycles of mercaptopurine, when the generation of the π-π* bonds between the mercaptopurine structure and hexagonal carbon cycles of RGO occurs. The electrochemical functionalization of the RGO sheets with PANI-ES is proved by the appearance of the Raman lines at 1165, 1332-1371, 1496 and 1585 and 1616 cm-1. The oxidation-reduction processes induced at the interface of the SPCE modified with PANI-ES functionalized RGO sheets and the electrolyte consisting into a phosphate buffer (PB) and AZA lead to the generation of new positive charges onto the PANI macromolecular chain and the adsorption of the drug on the working electrode surface that takes place via the π-π* bonds established between the benzene/quinoide rings of PANI and the imidazole/ purine cycles of AZA. These results indicate that the SPCE modified with the PANI-ES functionalized RGO sheets shows potential applications in the field of sensors for AZA detection.This study is focused on the evaluation of the Rhodamine B photodegradation using ZnO/carbon xerogel composite as a photocatalyst, in order to enhance the photocatalytic process efficiency under visible light. The proposed synthesis employs tannin as a precursor for the carbon xerogel, which enhances the economic and environmental aspect of the composite. The synthesized materials have the hexagonal structure of the zinc oxide (wurtzite), which is homogeneously distributed on the carbonaceous matrix. The diffuse reflectance test shows that light absorption was significantly enhanced for the composite. The solar light-driven photodegradation results revealed that the synthesized composite achieved virtually complete degradation of the dye present in the solution in less than 3 h, in all concentrations tested. The results of visible light driven photocatalysis showed that the carbonaceous material presents better photoactivity than the pure oxide (70% and 40% degradation of Rhodamine B, respectively), due to the synergistic effect between the carbon xerogel and zinc oxide on the properties of the composite. The photocatalytic mechanism main active species are the photogenerated vacancies and superoxide radicals.The aim of this study was to prepare and characterize nanostructured composites based of TiO₂, carbonaceus materials (GN or GO) and Ag and the test their capacity to remove the pollutants from domestic wastewater. The composites were characterized by IR and UV-Vis spectroscopy, X-ray diffraction, electron microscopy and nitrogen adsorption-desorption measurements. The photocatalytic activity was measured from the experiment of salicylic acid (SA) degradation. The capacity to remove the pollutants from domestic wastewater was performed by considering the absorbance of residual solution at 200 nm. The non-calcined composites have high specific surface area (˜300 m²/g), but nitrogen adsorption-desorption isotherms showed a porous structure with closed pores. The porosity of the thermal treated composites is about 10 times less, but the pores are open. The salicylic acid was 94% degraded over all composites, showing their efficient photoactivity. A percent of 70% of pollutants were removed over the calcined composites with GN and ˜67% on those with GO.

Autoři článku: Kenneykondrup0862 (Ebsen Knapp)