Kendalldanielsen2011

Z Iurium Wiki

Moreover, we describe the application of DNA vaccines co-administered with different types of genetic adjuvants and the methods to evaluate their potency in the mouse models.CpG Oligonucleotides (ODN) are immunomodulatory synthetic oligonucleotides specifically designed to stimulate Toll-like receptor 9. TLR9 is expressed on human plasmacytoid dendritic cells and B cells and triggers an innate immune response characterized by the production of Th1 and pro-inflammatory cytokines. This chapter reviews recent progress in understanding the mechanism of action of CpG ODN and provides an overview of human clinical trial results using CpG ODN to improve vaccines for the prevention/treatment of cancer, allergy, and infectious disease.Alphavirus vectors have been engineered for high-level gene expression relying originally on replication-deficient recombinant particles, more recently designed for plasmid DNA-based administration. As alphavirus-based DNA vectors encode the alphavirus RNA replicon genes, enhanced transgene expression in comparison to conventional DNA plasmids is achieved. Immunization studies with alphavirus-based DNA plasmids have elicited specific antibody production, have generated tumor regression and protection against challenges with infectious agents and tumor cells in various animal models. A limited number of clinical trials have been conducted with alphavirus DNA vectors. Compared to conventional plasmid DNA-based immunization, alphavirus DNA vectors required 1000-fold less DNA to elicit similar immune responses in rodents.The first proof-of-concept studies about the feasibility of genetic vaccines were published over three decades ago, opening the way for future development. The idea of nonviral antigen delivery had multiple advantages over the traditional live or inactivated pathogen-based vaccines, but a great deal of effort had to be invested to turn the idea of genetic vaccination into reality. Although early proof-of-concept studies were groundbreaking, they also showed that numerous aspects of genetic vaccines needed to be improved. Until the early 2000s, the vast majority of effort was invested into the development of DNA vaccines due to the potential issues of instability and low in vivo translatability of messenger RNA (mRNA). In recent years, numerous studies have demonstrated the outstanding abilities of mRNA to elicit potent immune responses against infectious pathogens and different types of cancer, making it a viable platform for vaccine development. Multiple mRNA vaccine platforms have been developed and evaluated in small and large animals and humans and the results seem to be promising. RNA-based vaccines have important advantages over other vaccine approaches including outstanding efficacy, safety, and the potential for rapid, inexpensive, and scalable production. There is a substantial investment by new mRNA companies into the development of mRNA therapeutics, particularly vaccines, increasing the number of basic and translational research publications and human clinical trials underway. This review gives a broad overview about genetic vaccines and mainly focuses on the past and present of mRNA vaccines along with the future directions to bring this potent vaccine platform closer to therapeutic use.Minicircle DNA (mcDNA) has been considered to be an alternative choice of traditional DNA vaccine due to its much smaller size, resulting in more efficient antigen synthesis, enhanced and long-lasting adaptive immune response, especially cellular immune response. However, the disadvantages such as relative high cost and labor intensiveness severely restrict its direct application in the field of veterinary vaccine. Here, we describe a novel Cre Recombinase-mediated In vivo McDNA platform, named CRIM, in which the parental plasmid could spontaneously transform into mcDNA by itself after transfection or oral administration. This CRIM vaccine platform might serve as a novel oral antigen delivery system for any infectious diseases, especially for veterinary application.Here, a new cell line, Ha168, was established from Helicoverpa armigera eggs and has been stably subcultured for over 30 passages in TNM-FH medium supplemented with 10% fetal bovine serum. The cell line consists of round and spindle-shaped cells and several giant cells. The round cells, with a cell diameter of 14.30 ± 2.804 μm, account for 77% of the cells. DNA amplification fingerprinting, random amplified polymorphic DNA analysis, and analysis of the mitochondrial cytochrome c oxidase subunit I gene confirmed that the Ha168 cells were derived from H. armigera. Karyotype analysis revealed the average chromosome number of Ha168 cells to be 71. Growth curves at passage 25 were determined and demonstrated that the cell population doubling time is 56.8 h. No mycoplasma contamination was detected in the cell line. Ha168 cells can be infected by recombinant baculovirus AcMNPV-EGFP, and exogenous protein expression level in this cell line is 70% of that in the Sf9 cell line.In the original publication the grant number is incorrectly published.Thyroid nodules are very common all over the world, and China is no exception. Ultrasound plays an important role in determining the risk stratification of thyroid nodules, which is critical for clinical management of thyroid nodules. For the past few years, many versions of TIRADS (Thyroid Imaging Reporting and Data System) have been put forward by several institutions with the aim to identify whether nodules require fine-needle biopsy or ultrasound follow-up. However, no version of TIRADS has been widely adopted worldwide till date. In China, as many as ten versions of TIRADS have been used in different hospitals nationwide, causing a lot of confusion. With the support of the Superficial Organ and Vascular Ultrasound Group of the Society of Ultrasound in Medicine of the Chinese Medical Association, the Chinese-TIRADS that is in line with China's national conditions and medical status was established based on literature review, expert consensus, and multicenter data provided by the Chinese Artificial Intelligence Alliance for Thyroid and Breast Ultrasound.

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic challenges national health systems and the global economy. Monitoring of infection rates and seroprevalence can guide public health measures to combat the pandemic. This depends on reliable tests on active and former infections. Here, we set out to develop and validate a specific and sensitive enzyme linked immunosorbent assay (ELISA) for detection of anti-SARS-CoV-2 antibody levels.

In our ELISA, we used SARS-CoV-2 receptor-binding domain (RBD) and a stabilized version of the spike (S) ectodomain as antigens. We assessed sera from patients infected with seasonal coronaviruses, SARS-CoV-2 and controls. We determined and monitored IgM-, IgA- and IgG-antibody responses towards these antigens. In addition, for a panel of 22 sera, virus neutralization and ELISA parameters were measured and correlated.

The RBD-based ELISA detected SARS-CoV-2-directed antibodies, did not cross-react with seasonal coronavirus antibodies and correlated with virus neutralization (R

 = 0.89). Seroconversion started at 5days after symptom onset and led to robust antibody levels at 10days after symptom onset. We demonstrate high specificity (99.3%; N = 1000) and sensitivity (92% for IgA, 96% for IgG and 98% for IgM; > 10days after PCR-proven infection; N = 53) in serum.

With the described RBD-based ELISA protocol, we provide a reliable test for seroepidemiological surveys. Due to high specificity and strong correlation with virus neutralization, the RBD ELISA holds great potential to become a preferred tool to assess thresholds of protective immunity after infection and vaccination.

With the described RBD-based ELISA protocol, we provide a reliable test for seroepidemiological surveys. Due to high specificity and strong correlation with virus neutralization, the RBD ELISA holds great potential to become a preferred tool to assess thresholds of protective immunity after infection and vaccination.Black women carry a disproportionate number of new HIV infections in the USA. Studies that have assessed HIV risk perception along with HIV prevention interventions for Black women have primarily focused on Black women of low socioeconomic status. Few studies have assessed HIV risk perceptions and sexual behavior among college-educated Black women of higher socioeconomic status despite their high risk of HIV. College-educated Black women are most likely to acquire HIV while in college, and there has been a marked absence of research assessing the environmental and cultural influences present throughout college-campuses, coupled with evaluating how these factors shape sexual behaviors. We conducted surveys with Black female students attending a historically Black college and Black female students attending a predominately White university, and compared baseline differences in sexual behaviors among both populations. Results showed that for participants attending the historically Black college certain sociocultural elements, such as music and media, had a significantly stronger influence on sexuality and sexual behaviors compared with students attending predominately White universities. The development of future HIV prevention interventions for Black women necessitates an understanding of the diverse microcultures that Black women come from. This research is high priority for college-educated Black women given this population's lack of inclusion in HIV prevention research.The aim of this article is to summarize the pathways connecting the gut and the brain and to highlight their role in the development of depression as well as their potential use as therapeutic targets. A literature search was conducted in PubMed using relevant keywords and their combinations up to the end of March 2020. Previously seen as a disease pertaining solely to the central nervous system, depression is now perceived as a multifactorial condition that extends beyond neurotransmitter depletion. Penicillin-Streptomycin research buy Central to our understanding of the disease is our current knowledge of the communication between the gut and the brain, which is bidirectional and involves neural, endocrine, and immune pathways. This communication is facilitated via stress-mediated activation of the HPA axis, which stimulates the immune system and causes a decrease in microbial diversity, also known as dysbiosis. This change in the intestinal flora leads, in turn, to bacterial production of various substances which stimulate both the enteric nervous system and the vagal afferents and contribute to additional activation of the HPA axis. Concomitantly, these substances are associated with an increase in intestinal permeability, namely, the leaky gut phenomenon. The bidirectional link between the gut and the brain is of great importance for a more inclusive approach to the management of depression. It can thus be deployed for the development of novel therapeutic strategies against depression, offering promising alternatives to limited efficacy antidepressants, while combination therapy also remains a potential treatment option.

Autoři článku: Kendalldanielsen2011 (Love Timm)