Kelleherwichmann8372

Z Iurium Wiki

Phytoremediation has proven to be an effective in-situ treatment technique for antibiotic contamination. Due to the immature methods of extracting multi-antibiotics in different plant tissues, the antibiotic absorption and transportation mechanism in the phytoremediation process has yet to be resolved. Therefore, an improved Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) pretreatment with ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) detection method for 28 antibiotics in different plant tissues (root, stem, leaf and seed) was developed in this study. The optimized method showed satisfactory performance with recoveries for most antibiotics ranging from 70% to 130% (except sulfadoxine with 138 ± 8.84% in root, sulfameter with 68.9 ± 1.87% and sulfadoxine with 141 ± 10.0% in seed). The limits of detection (LODs) of the target compounds in root, stem, leaf and seed were 0.04 ± 0.02 ~ 2.50 ± 1.14 ng/g, 0.05 ± 0.02 ~ 1.78 ± 0.42 ng/g, 0.06 ± 0.01 ~ 2.50 ± 0.14 ng/g and 0.13 ± 0.10 ~ 3.64 ± 0.74 ng/g, respectively. This developed method was successfully applied to the determination of antibiotics in different tissues of hydroponic wetland plants exposed to antibiotics-spiked water for one-month. Sixteen of 28 spiked antibiotics were detected in plant tissue samples. Overall, of these 16 antibiotics, all were detected in root samples (from less then LOQ to 1478 ± 353 ng/g), eleven in stem samples (from less then LOQ to 425 ± 47.0 ng/g), and nine in leaf samples (from less then LOQ to 429 ± 84.5 ng/g). This developed analytical method provided a robust tool for the simultaneous screening and determination of antibiotics in different plant tissues.Cell membrane chromatography (CMC) is effective and widely used in drug screening, especially for the analysis of complex matrixes. However, it is time-consuming and costly given that cells or animals are employed for activity confirmation, which leads to a large amount of waste being produced if the result is negative. Stepwise frontal analysis is employed to saturate the affinity stationary phase, by using a series of low- to high-concentration solutions which resultantly form a staircase pattern. In doing so, the waste of samples, caused by the balancing process, can be avoided. In this study, stepwise frontal analysis coupled with a CMC system was performed for screening and characterizing the affinity of an active compound from wuweizi. click here Schizandrin A was screened and identified by α1A AR /CMC coupled with UHPLC-MS/MS. By comparing the values obtained with those related to the equilibrium dissociation constant (Kd) calculated by zonal elution, the accuracy of the stepwise frontal analysis was verified. Subsequently, the type of affinity force between Schizandrin A and α1A AR was studied by thermodynamic parameters. Moreover, schizandrin A showed an antagonistic effect on phenylephrine-induced contractions, which relax prostate muscle strips in a non-competitive antagonism manner. It has already suggested that the active compound, schizandrin A, could be used as a lead compound for the treatment of benign prostate hyperplasia (BPH) and should be further studied. Thus, the findings of this study are significant given that they could result in an online screening and affinity analysis method being utilized for the discovery of medicinal compounds as well as clarify the interaction characteristics between a drug and a receptor.Sandalwood is one of the most valuable woods in the world. However, today's counterfeits are widespread, it is difficult to distinguish authenticity. In this paper, similar genus (Dalbergia and Pterocarpus) and confused species (Gluta sp.) of sandalwood were quickly and efficiently identified. Rapid identification model based on 1H NMR and decision tree (DT) algorithm was firstly developed for the identification of sandalwood, and the accuracy was improved by introducing the AdaBoost algorithm. The accuracy of the final model was above 95%. And the feature components between different species of sandalwood were further explored using UHPLC-QTOFMS and NMR spectrometry. The results showed that 183 compounds were identified, among which 99 were known components, 84 were unknown components. The 1H NMR and 13C NMR signals of 505 samples were assigned, among them, 14 compounds were attributed, characteristic chemical shift intervals with great differences in the model were analysed. Furthermore, the fragmentation pattern of different compounds from sandalwood, in both positive and negative ion ESI modes, was summarized. The results showed a potential and rapid tool based on DT, NMR spectroscopy and UHPLC-QTOFMS, which had performed great potential for rapid identification and feature analysis of sandalwood.The surfaces of the polyacrylamide cryogels were coated with L-tryptophan (cryogel-Trp) or L-phenylalanine (cryogel-Phe) to enhance crude leaf extract-derived ora-pro-nobis (OPN) protein binding via pseudo-specific hydrophobic interactions. Cryogels functionalized with amino acids were prepared and characterized through morphological, hydrodynamic, and thermal analyses. The adsorption capacities of cryogel-Phe and cryogel-Trp were evaluated in terms of type (sodium sulfate or sodium phosphate) and concentration (0.02 or 0.10 mol∙L-1) of saline solution, pH (4.0, 5.5, or 7.0), and NaCl concentration (0.0 or 0.5 mol∙L-1). The cryogel-Phe presented a higher adsorptive capacity, achieving its maximum value (q = 92.53 mg∙g-1) when the crude OPN crude leaf extract was diluted in sodium sulfate 0.02 mol∙L-1 + NaCl 0.50 mol∙L-1, at pH = 7.0. The dilution rate significantly (p  less then  0.05) affected the recovered protein amount after the adsorption and elution processes, reaching 94.45% when the feedstock solution was prepared with a crude extract 5 times. The zeta potential for the eluted OPN proteins was 5.76 mV (pH = 3.23) for both dilution rates. The secondary structure composition mainly included β-sheets (46.50%) and α-helices (13.93%). The cryogel-Phe exhibited interconnected pores ranging 20-300 μm in size, with a Young modulus of 1.51 MPa, and thermal degradation started at 230 °C. These results indicate that the cryogel-Phe exhibited satisfactory properties as promising chromatography support for use in high-throughput purification of crude leaf extract-derived OPN proteins.

Autoři článku: Kelleherwichmann8372 (Savage Mead)