Kejserhessellund6075

Z Iurium Wiki

AP20187 , other than gastro-esophageal reflux disease and its complications, can affect the esophagus. While some of these can present with unspecific lesions (i.e. ulcers and epithelial damage) and require clinico-pathological correlation for diagnosis (i.e. drug-induced esophagitis and corrosive esophagitis) other conditions show distinctive histological lesions which enable the pathologist to reach the diagnosis (i.e. some specific infectious esophagites and Crohn's disease). In this context eosinophilic esophagitis is the condition which has been increasingly studied in the last two decades, while lymphocytic esophagitis, a relatively new entity, still represents an enigma. This overview will focus on and describe histologic lesions which allow pathologists to differentiate between these conditions.The first part of this overview on non-neoplastic esophagus is focused on gastro-esophageal reflux disease (GERD) and Barrett's esophagus. In the last 20 years much has changed in histological approach to biopsies of patients with gastro-esophageal reflux disease. In particular, elementary histologic lesions have been well defined and modality of evaluation and grade are detailed, their sensitivity and specificity has been evaluated and their use has been validated by several authors. Also if there is not a clinical indication to perform biopsies in patient with GERD, the diagnosis of microscopic esophagitis, when biopsies are provided, can be performed by following simple rules for evaluation which allow pathologists to make the diagnosis with confidence. On the other hand, biopsies are required for the diagnosis of Barrett's esophagus. This diagnosis is the synthesis of endoscopic picture (which has to be provided with the proper description on extent and with adequate biopsies number) and histologic pattern. The current guidelines and expert opinions for the correct management of these diagnosis are detailed.Mesenchymal tumours represent one of the most challenging field of diagnostic pathology and refinement of classification schemes plays a key role in improving the quality of pathologic diagnosis and, as a consequence, of therapeutic options. The recent publication of the new WHO classification of Soft Tissue Tumours and Bone represents a major step toward improved standardization of diagnosis. Importantly, the 2020 WHO classification has been opened to expert clinicians that have further contributed to underline the key value of pathologic diagnosis as a rationale for proper treatment. Several relevant advances have been introduced. In the attempt to improve the prediction of clinical behaviour of solitary fibrous tumour, a risk assessment scheme has been implemented. NTRK-rearranged soft tissue tumours are now listed as an "emerging entity" also in consideration of the recent therapeutic developments in terms of NTRK inhibition. This decision has been source of a passionate debate regarding the definition of "tumour entity" as well as the consequences of a "pathology agnostic" approach to precision oncology. In consideration of their distinct clinicopathologic features, undifferentiated round cell sarcomas are now kept separate from Ewing sarcoma and subclassified, according to the underlying gene rearrangements, into three main subgroups (CIC, BCLR and not ETS fused sarcomas) Importantly, In order to avoid potential confusion, tumour entities such as gastrointestinal stroma tumours are addressed homogenously across the different WHO fascicles. Pathologic diagnosis represents the integration of morphologic, immunohistochemical and molecular characteristics and is a key element of clinical decision making. The WHO classification is as a key instrument to promote multidisciplinarity, stimulating pathologists, geneticists and clinicians to join efforts aimed to translate novel pathologic findings into more effective treatments.

To report the exceptional occurrence of ossifying fibromyxoid tumour (OFMT) as a primary bone lesion. OFMT is a rare soft tissue tumour of uncertain differentiation and variable malignant potential, that occurs in adults with a slight male predominance. It is typically located in the subcutis or in the skeletal muscles of the extremities, followed by trunk or head and neck.

Two cases of OFMT proven to arise from bone are presented. The first is a 65-year old female with a history of rib "osteosarcoma", presenting with an inferior lobe left lung mass. The second is a man with a lytic lesion of the 5th cervical vertebra that recurred shortly after resection. Following H&E and immunohistochemical examination, tumour samples were analysed by NGS and by break-apart FISH to detect rearrangement of the

and

genes.

gene-rearrangement was identified by FISH on both the primary and the metastatic lesion of first patient. NGS identified a

(intron1) and

(exon 10) fusion transcript later confirmed by positive

rearrangement on FISH in the second case.

The demonstration of

gene rearrangements represents a fundamental ancillary diagnostic test when presented with challenging examples of OFMT.

The demonstration of PHF1 gene rearrangements represents a fundamental ancillary diagnostic test when presented with challenging examples of OFMT.In this study the metric of detective quantum efficiency (DQE) was applied to Cherenkov imaging systems for the first time, and results were compared for different detector hardware, gain levels and with imaging processing for noise suppression. Intensified complementary metal oxide semiconductor cameras using different image intensifier designs (Gen3 and Gen2+) were used to image Cherenkov emission from a tissue phantom in order to measure the modulation transfer function (MTF) and noise power spectrum (NPS) of the systems. These parameters were used to calculate the DQE for varying acquisition settings and image processing steps. MTF curves indicated that the Gen3 system had superior contrast transfer and spatial resolution than the Gen2+ system, with [Formula see text] values of 0.52 mm-1 and 0.31 mm-1, respectively. #link# With median filtering for noise suppression, these values decreased to 0.50 mm-1 and 0.26 mm-1. The maximum NPS values for the Gen3 and Gen2+ systems at high gain were 1.3 × 106 mm2 and 9.1 × 104 mm2 respectively, representing a 14x decrease in noise power for the Gen2+ system.

Autoři článku: Kejserhessellund6075 (Donahue Hull)