Keithborregaard7410
Serine/arginine-rich splicing factors, which are involved in pre-mRNA splicing by interacting with MALAT1, reside in nuclear speckles in wild-type and diabetic DRG neurons; MALAT1 silencing was associated with their disruption. The findings provide evidence for an important role that MALAT1 plays in DPN, suggesting neuroprotection and regulation of pre-mRNA splicing in nuclear speckles. This is also the first example in which a systemically delivered nucleotide therapy had a direct impact on DRG diabetic neurons and their axons.We previously identified that human epidermal growth factor receptor 3 (HER3, also known as ERBB3) is a key mediator in liver endothelial cell (EC) promoting colorectal cancer growth and chemoresistance, and suggested HER3-targeted therapy as a strategy for treating patients with metastatic colorectal cancer in the liver. Meanwhile, KRAS mutations occur in 40%-50% of metastatic colorectal cancer and render colorectal cancer resistant to therapies targeting the other HER family protein epidermal growth factor receptor (EGFR). It is necessary to elucidate the roles of KRAS mutation status in HER3-mediated cell survival and colorectal cancer response to HER3 inhibition. In the present study, we used primary ECs isolated from non-neoplastic liver tissues to recapitulate the liver EC microenvironment. We demonstrated that liver EC-secreted factors activated colorectal cancer-associated HER3, and increased colorectal cancer cell survival in vitro and promoted colorectal cancer patient-derived xenograft tumor growthtype or KRAS mutant metastatic colorectal cancer.
Metabolic endotoxemia may be a shared mechanism underlying childhood obesity and early-onset metabolic diseases (eg, type 2 diabetes, nonalcoholic fatty liver disease).
Examine prospective associations of serum endotoxin biomarkers lipopolysaccharide (LPS) and its binding protein, LPS binding protein (LBP), and anti-endotoxin core immunoglobulin G (EndoCab IgG) with adiposity and cardiometabolic risk in youth.
This prospective study included 393 youth in the Exploring Perinatal Outcomes Among Children cohort in Colorado. Participants were recruited from 2006 to 2009 at age 10 years (baseline) and followed for 6 years (follow-up). We examined associations of endotoxin biomarkers at baseline with adiposity [body mass index (BMI) z-score, visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), skinfolds, waist circumference] and cardiometabolic risk (insulin, glucose, adipokines, lipid profile, blood pressure) across both visits using mixed-effects regression, and with hepatic fat fraction (HFF) f childhood obesity and cardiometabolic conditions associated with exposure to fetal overnutrition.Measuring inflammatory markers is critical to evaluating both recent infection status and overall human and animal health; however, there are relatively few techniques that do not require specialized equipment or personnel for detecting inflammation among wildlife. Such techniques are useful in that they help determine individual and population-level inflammatory status without the infrastructure and reagents that many more-specific assays require. One such technique, known as the erythrocyte sedimentation rate (ESR), is a measure of how quickly erythrocytes (red blood cells) settle in serum, with a faster rate indicating a general, underlying inflammatory process is occurring. The technique is simple, inexpensive, and can be performed in the field without specialized equipment. We took advantage of a population of African buffalo (Syncerus caffer), well studied from June 2014 to May 2017, to understand the utility of ESR in an important wildlife species. When ESR was compared with other markers of immunity in African buffalo, it correlated to known measures of inflammation. We found that a faster ESR was significantly positively correlated with increased total globulin levels and significantly negatively correlated with increased red blood cell count and albumin levels. We then evaluated if ESR correlated to the incidence of five respiratory pathogens and infection with two tick-borne pathogens in African buffalo. Our results suggest that elevated ESR is associated with the incidence of bovine viral diarrhea virus infection, parainfluenza virus, and Mannheimia haemolytica infections as well as concurrent Anaplasma marginale and Anaplasma centrale coinfection. These findings suggest that ESR is a useful field test as an inflammatory marker in individuals and herds, helping us better monitor overall health status in wild populations.Since organisms develop and thrive in the face of constant perturbations due to environmental and genetic variation, species may evolve resilient genetic architectures. We sought evidence for this process, known as canalization, through a comparison of the prevalence of phenotypes as a function of the polygenic score (PGS) across environments in the UK Biobank cohort study. Contrasting seven diseases and three categorical phenotypes with respect to 151 exposures in 408,925 people, the deviation between the prevalence-risk curves was observed to increase monotonically with the PGS percentile in one-fifth of the comparisons, suggesting extensive PGS-by-Environment (PGS×E) interaction. After adjustment for the dependency of allelic effect sizes on increased prevalence in the perturbing environment, cases where polygenic influences are greater or lesser than expected are seen to be particularly pervasive for educational attainment, obesity, and metabolic condition type-2 diabetes. Inflammatory bowel disease analysis shows fewer interactions but confirms that smoking and some aspects of diet influence risk. Notably, body mass index has more evidence for decanalization (increased genetic influence at the extremes of polygenic risk), whereas the waist-to-hip ratio shows canalization, reflecting different evolutionary pressures on the architectures of these weight-related traits. An additional 10 % of comparisons showed evidence for an additive shift of prevalence independent of PGS between exposures. These results provide the first widespread evidence for canalization protecting against disease in humans and have implications for personalized medicine as well as understanding the evolution of complex traits. The findings can be explored through an R shiny app at https//canalization-gibsonlab.shinyapps.io/rshiny/.The biological effects of ultrasound may be classified into thermal and nonthermal mechanisms. The nonthermal effects may be further classified into cavitational and noncavitational mechanisms. DNA damage induced by ultrasound is considered to be related to nonthermal cavitations. For this aspect, many in vitro studies on DNA have been conducted for evaluating the safety of diagnostic ultrasound, particularly in fetal imaging. Technological advancement in detecting DNA damage both in vitro and in vivo have elucidated the mechanism of DNA damage formation and their cellular response. Damage to DNA, and the residual damages after DNA repair are implicated in the biological effects. Here, we discuss the historical evidence of ultrasound on DNA damage and the mechanism of DNA damage formation both in vitro and in vivo, compared with those induced by ionizing radiation. We also offer a commentary on the safety of ultrasound over X-ray-based imaging. Also, understanding the various mechanisms involved in the bioeffects of ultrasound will lead us to alternative strategies for use of ultrasound for therapy.Our understanding of microbial diversity and its evolutionary relationships has increased substantially over the last decade. Such an understanding has been greatly fueled by culture-independent metagenomics analyses. However, the outcome of some of these studies and their biological and evolutionary implications, such as the origin of the eukaryotic lineage from the recently discovered archaeal Asgard superphylum, is debated. The sequences of the ribosomal constituents are amongst the most used phylogenetic markers. However, the functional consequences underlying the analysed sequence diversity and their putative evolutionary implications are essentially not taken into consideration. Here, we propose to exploit additional functional hallmarks of ribosome biogenesis to help disentangle competing evolutionary hypotheses. Using selected examples, such as the multiple origins of halophily in archaea or the evolutionary relationship between the Asgard archaea and Eukaryotes, we illustrate and discuss how function-aware phylogenetic framework can contribute to refining our understanding of archaeal phylogeny and the origin of eukaryotic cells.
Identifying disease-related genes is an important issue in computational biology. Module structure widely exists in biomolecule networks, and complex diseases are usually thought to be caused by perturbations of local neighborhoods in the networks, which can provide useful insights for the study of disease-related genes. However, the mining and effective utilization of the module structure is still challenging in such issues as a disease gene prediction.
We propose a hybrid disease-gene prediction method integrating multiscale module structure (HyMM), which can utilize multiscale information from local to global structure to more effectively predict disease-related genes. HyMM extracts module partitions from local to global scales by multiscale modularity optimization with exponential sampling, and estimates the disease relatedness of genes in partitions by the abundance of disease-related genes within modules. Then, a probabilistic model for integration of gene rankings is designed in order to integrate ure and its application in such issues as a disease-gene prediction.
Stress hyperglycemia is associated with an increased risk of diabetes among survivors of critical illness. We investigated whether patients without diabetes hospitalized for bacteremia or nonbacteremic diseases with transient stress hyperglycemia would have a higher risk of subsequent diabetes development compared with those who remained normoglycemic.
This retrospective observational study was conducted on 224,534 in-patients with blood culture records. Stress hyperglycemia was defined based on the highest random glucose level ≥7.8 mmol/L during the index admission period. Diagnosis of diabetes, as the primary end point of interest, was defined based on diagnostic codes, blood test results, or medication records. Differences in cumulative incidence and hazard ratios (HRs) of diabetes between groups were assessed using the Kaplan-Meier estimator and Cox regression.
After exclusion of patients with preexisting or undiagnosed diabetes or indeterminate diabetes status and propensity score matching, bactere their subsequent follow-ups.
To investigate the association between admission blood glucose levels and risk of in-hospital cardiovascular and renal complications.
In this multicenter prospective study of 36,269 adults hospitalized with COVID-19 between 6 February 2020 and 16 March 2021 (N = 143,266), logistic regression models were used to explore associations between admission glucose level (mmol/L and mg/dL) and odds of in-hospital complications, including heart failure, arrhythmia, cardiac ischemia, cardiac arrest, coagulation complications, stroke, and renal injury. SPOP-i-6lc Nonlinearity was investigated using restricted cubic splines. Interaction models explored whether associations between glucose levels and complications were modified by clinically relevant factors.
Cardiovascular and renal complications occurred in 10,421 (28.7%) patients; median admission glucose level was 6.7 mmol/L (interquartile range 5.8-8.7) (120.6 mg/dL [104.4-156.6]). While accounting for confounders, for all complications except cardiac ischemia and stroke, there was a nonlinear association between glucose and cardiovascular and renal complications.