Keenemangum0069

Z Iurium Wiki

Bioinspired and biohybrid micromotors represent a revolution in microrobotic research and are playing an increasingly important role in biomedical applications. In particular, biological micromotors that are multifunctional and can perform complex tasks are in great demand. Here, we report living and multifunctional micromotors based on single cells (green microalgae Chlamydomonas reinhardtii) that are controlled by optical force. The micromotor's locomotion can be carefully controlled in a variety of biological media including cell culture medium, saliva, human serum, plasma, blood, and bone marrow fluid. It exhibits the capabilities to perform multiple tasks, in particular, indirect manipulation of biological targets and disruption of biological aggregates including in vitro blood clots. These micromotors can also act as elements in reconfigurable motor arrays where they efficiently work collaboratively and synchronously. This work provides new possibilities for many in vitro biomedical applications including target manipulation, cargo delivery and release, and biological aggregate removal.The total synthesis of (-)-sigillin A, a highly chlorinated and oxygenated octahydroisocoumarin, is described herein. A hexahydroisocoumarin skeleton was constructed from (R)-4-(trichloromethyl)oxetan-2-one in seven steps. Its unique manganese oxidation provided an enone as the key intermediate of sigillin A. Stereoselective installation of two hydroxy groups and formation of gem-dichloroalkene from the corresponding ketone led to the total synthesis of (-)-sigillin A in a total of 16 steps.Performing dynamic off-lattice multicanonical Monte Carlo simulations, we study the statics, dynamics, and scission-recombination kinetics of a self-assembled in situ-polymerized polydisperse living polymer brush (LPB), designed by surface-initiated living polymerization. The living brush is initially grown from a two-dimensional substrate by end-monomer polymerization-depolymerization reactions through seeding of initiator arrays on the grafting plane which come in contact with a solution of nonbonded monomers under good solvent conditions. The polydispersity is shown to significantly deviate from the Flory-Schulz type for low temperatures because of pronounced diffusion limitation effects on the rate of the equilibration reaction. The self-avoiding chains take up fairly compact structures of typical size Rg(N) ∼ Nν in rigorously two-dimensional (d = 2) melt, with ν being the inverse fractal dimension (ν = 1/d). The Kratky description of the intramolecular structure factor F(q), in keeping with the concept oxponents α ≈ 0.64 and τ ≈ 1.70 are in good agreement with those predicted within the context of the Diffusion-Limited Aggregation theory, α = 2/3 and τ = 7/4.Recently, we have shown that a tensile stress applied to chains of poly(ethylene oxide) (PEO) in water reduces the solubility and leads to phase separation of PEO chains from water with the formation of a two-phase region. In this work, we further elucidate the generic mechanism behind strain-induced phase transitions in aqueous PEO solutions with concentrations of 50-60 wt % by performing all-atom molecular dynamics simulations. In particular, we study the stability of oriented PEO fibers after removing stretching forces. We found that the size of the PEO bundle increased with time, which is associated with the dissolution of PEO chains on the fiber surface due to the reformation of hydrogen bonds between the outer PEO molecules and water. For precise characterization of the fibers, the scattering patterns (small- and wide-angle X-ray spectra) for configurations taken at different relaxation times are calculated. The tendency of the oligomer chains to be peeled off from the surface of the bundle eventually might lead to a complete dissolution of the PEO fiber. We conclude that either entanglement constraints or a quick drying process are necessary to conserve the fiber structure in a quiescent state. HA130 The scattering results show that external strain induced a liquid-liquid phase separation first. On long time scales, this can be a precursor for crystallization of the fiber.Single-molecular systems are a test bed to analyze to what extent thermodynamics applies when the size of the system is drastically reduced. Isometric and isotensional single-molecule stretching experiments and their theoretical interpretations have shown the lack of a thermodynamic limit at those scales and the nonequivalence between their corresponding statistical ensembles. This disparity between thermodynamic results obtained in both experimental protocols can also be observed in entropy production, as previous theoretical results have shown. In this work, we present results from molecular dynamics simulations of stretching of a typical polymer, polyethylene-oxide, where this framework is applied to obtain friction coefficients associated with stretching at the two different statistical ensembles for two different system sizes, from which the entropy production follows. In the smallest system, they are different up to a factor of 2, and for the bigger system, the difference is smaller, as predicted. In this way, we provide numerical evidence that a thermodynamic description is still meaningful for the case of single-molecule stretching.Effective methane utilization for either clean power generation or value-added chemical production has been a subject of growing attention worldwide for decades, yet challenges persist mostly in relation to methane activation under mild conditions. Here, we report hematite, an earth-abundant material, to be highly effective and thermally stable to catalyze methane combustion at low temperatures ( less then 500 °C) with a low light-off temperature of 230 °C and 100% selectivity to CO2. The reported performance is impressive and comparable to those of precious-metal-based catalysts, with a low apparent activation energy of 17.60 kcal·mol-1. Our theoretical analysis shows that the excellent performance stems from a tetra-iron center with an antiferromagnetically coupled iron dimer on the hematite (110) surface, analogous to that of the methanotroph enzyme methane monooxygenase that activates methane at ambient conditions in nature. Isotopic oxygen tracer experiments support a Mars van Krevelen redox mechanism where CH4 is activated by reaction with a hematite surface oxygen first, followed by a catalytic cycle through a molecular-dioxygen-assisted pathway. Surface studies with in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and density functional theory (DFT) calculations reveal the evolution of reaction intermediates from a methoxy CH3-O-Fe, to a bridging bidentate formate b-HCOO-Fe, to a monodentate formate m-HCOO-Fe, before CO2 is eventually formed via a combination of thermal hydrogen-atom transfer (HAT) and proton-coupled electron transfer (PCET) processes. The elucidation of the reaction mechanism and the intermediate evolutionary profile may allow future development of catalytic syntheses of oxygenated products from CH4 in gas-phase heterogeneous catalysis.A phytochemical study on the aerial parts of Leonurus japonicus led to the isolation and identification of 38 labdane diterpenoids, including 18 new (1, 2, 11, 12, 16-21, 24, 30-34, 37, 38) and 20 known (3-10, 13-15, 22, 23, 25-29, 35, 36) analogues. Their structures were elucidated based on physical data analysis, including 1D and 2D NMR, HRMS, UV, IR, and X-ray diffraction. The structure of the known compound 4 was confirmed by single-crystal X-ray diffraction data. These compounds can be divided into furanolabdane (1-10), tetrahydrofuranolabdane (11-15), lactonelabdane (16-23), labdane (24-29), and seco-labdane (30-38) type diterpenoids. All compounds were screened by lipopolysaccharide (LPS)-induced nitric acid (NO) production in RAW264.7 cells to evaluate anti-inflammatory effects. Compounds 1, 5, 10-13, 16-19, 31-33, and 38 inhibited NO production with IC50 values lower than 50 μM, with compound 30 being the most active, with an IC50 value of 3.9 ± 1.7 μM. Further studies show that compound 30 inhibits pro-inflammatory cytokine production and IKK α/β phosphorylation and restores the IκB expression levels in the NF-κB signaling pathway.Multivalent lectin-glycan interactions are widespread in biology and are often exploited by pathogens to bind and infect host cells. Glycoconjugates can block such interactions and thereby prevent infection. The inhibition potency strongly depends on matching the spatial arrangement between the multivalent binding partners. However, the structural details of some key lectins remain unknown and different lectins may exhibit overlapping glycan specificity. This makes it difficult to design a glycoconjugate that can potently and specifically target a particular multimeric lectin for therapeutic interventions, especially under the challenging in vivo conditions. Conventional techniques such as surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) can provide quantitative binding thermodynamics and kinetics. However, they cannot reveal key structural information, e.g., lectin's binding site orientation, binding mode, and interbinding site spacing, which are critical to design specific multivalf a glycoconjugate to simultaneously block all binding sites of a target lectin is key to robust inhibition of viral infection.To complement established rational and evolutionary protein design approaches, significant efforts are being made to utilize computational modeling and the diversity of naturally occurring protein sequences. Here, we combine structural biology, genomic mining, and computational modeling to identify structural features critical to aldehyde deformylating oxygenases (ADOs), an enzyme family that has significant implications in synthetic biology and chemoenzymatic synthesis. Through these efforts, we discovered latent ADO-like function across the ferritin-like superfamily in various species of Bacteria and Archaea. We created a machine learning model that uses protein structural features to discriminate ADO-like activity. Computational enzyme design tools were then utilized to introduce ADO-like activity into the small subunit of Escherichia coli class I ribonucleotide reductase. The integrated approach of genomic mining, structural biology, molecular modeling, and machine learning has the potential to be utilized for rapid discovery and modulation of functions across enzyme families.Methyl chloride (CH3Cl) and methyl bromide (CH3Br) are the predominant carriers of natural chlorine and bromine from the troposphere to the stratosphere, which can catalyze the destruction of stratospheric ozone. Here, penguin colony soils (PCS) and the adjacent tundra soils (i.e., penguin-lacking colony soils, PLS), seal colony soils (SCS), tundra marsh soils (TMS), and normal upland tundra soils (UTS) in coastal Antarctica were collected and incubated for the first time to confirm that these soils were CH3Cl and CH3Br sources or sinks. Overall, tundra soil acted as a net sink for CH3Cl and CH3Br with potential flux ranges from -18.1 to -2.8 pmol g-1 d-1 and -1.32 to -0.24 pmol g-1 d-1, respectively. The deposition of penguin guano or seal excrement into tundra soils facilitated the simultaneous production of CH3Cl and CH3Br and resulted in a smaller sink in PCS, SCS, and PLS. Laboratory-based thermal treatments and anaerobic incubation experiments suggested that the consumption of CH3Cl and CH3Br was predominantly mediated by microbes while the production was abiotic and O2 independent.

Autoři článku: Keenemangum0069 (Gunter Eriksen)