Kearnsdowling8579

Z Iurium Wiki

Differences were most evident in frontal and temporal regions. The pulsatile intracranial pressure was measured overnight and tracer propagation in brain compared between individuals with pathological and normal pulsatile intracranial pressure. In individuals with pathological pulsatile intracranial pressure, tracer enrichment was stronger and clearance from brain delayed, particularly in regions nearby large artery trunks at the brain surface. The present in vivo observations provide evidence for impaired glymphatic function in several brain regions of idiopathic intracranial hypertension patients. Glymphatic failure may imply altered clearance of metabolic byproducts, which may precede neurodegeneration. Further studies are needed to characterize glymphatic failure in idiopathic intracranial hypertension.Relation extraction (RE) is a fundamental task for extracting gene-disease associations from biomedical text. Many state-of-the-art tools have limited capacity, as they can extract gene-disease associations only from single sentences or abstract texts. A few studies have explored extracting gene-disease associations from full-text articles, but there exists a large room for improvements. In this work, we propose RENET2, a deep learning-based RE method, which implements Section Filtering and ambiguous relations modeling to extract gene-disease associations from full-text articles. We designed a novel iterative training data expansion strategy to build an annotated full-text dataset to resolve the scarcity of labels on full-text articles. In our experiments, RENET2 achieved an F1-score of 72.13% for extracting gene-disease associations from an annotated full-text dataset, which was 27.22, 30.30, 29.24 and 23.87% higher than BeFree, DTMiner, BioBERT and RENET, respectively. We applied RENET2 to (i) ∼1.89M full-text articles from PubMed Central and found ∼3.72M gene-disease associations; and (ii) the LitCovid articles and ranked the top 15 proteins associated with COVID-19, supported by recent articles. RENET2 is an efficient and accurate method for full-text gene-disease association extraction. The source-code, manually curated abstract/full-text training data, and results of RENET2 are available at GitHub.Genome-wide association study data analyses often face two significant challenges (i) high dimensionality of single-nucleotide polymorphism (SNP) genotypes and (ii) imputation of missing values. SNPs are not independent due to physical linkage and natural selection. The correlation of nearby SNPs is known as linkage disequilibrium (LD), which can be used for LD conceptual SNP bin mapping, missing genotype inferencing and SNP dimension reduction. We used a stochastic process to describe the SNP signals and proposed two types of autocorrelations to measure nearby SNPs' information redundancy. Based on the calculated autocorrelation coefficients, we constructed LD bins. We adopted a k-nearest neighbors algorithm (kNN) to impute the missing genotypes. We proposed several novel methods to find the optimal synthetic marker to represent the SNP bin. We also proposed methods to evaluate the information loss or information conservation between using the original genome-wide markers and using dimension-reduced synthetic markers. Our performance assessments on the real-life SNP data from a rice recombinant inbred line (RIL) population and a rice HapMap project show that the new methods produce satisfactory results. We implemented these functional modules in C/C++ and streamlined them into a web-based pipeline named PIP-SNP (https//bioinfo.noble.org/PIP_SNP/) for processing SNP data.Changes in cellular chromatin states fine-tune transcriptional output and ultimately lead to phenotypic changes. Here we propose a novel application of our reproducibility-optimized test statistics (ROTS) to detect differential chromatin states (ATAC-seq) or differential chromatin modification states (ChIP-seq) between conditions. We compare the performance of ROTS to existing and widely used methods for ATAC-seq and ChIP-seq data using both synthetic and real datasets. Our results show that ROTS outperformed other commonly used methods when analyzing ATAC-seq data. Selleck Proteasome inhibitor ROTS also displayed the most accurate detection of small differences when modeling with synthetic data. We observed that two-step methods that require the use of a separate peak caller often more accurately called enrichment borders, whereas one-step methods without a separate peak calling step were more versatile in calling sub-peaks. The top ranked differential regions detected by the methods had marked correlation with transcriptional differences of the closest genes. Overall, our study provides evidence that ROTS is a useful addition to the available differential peak detection methods to study chromatin and performs especially well when applied to study differential chromatin states in ATAC-seq data.Recent reports have revealed that repeat-derived sequences embedded in introns or long noncoding RNAs (lncRNAs) are targets of RNA-binding proteins (RBPs) and contribute to biological processes such as RNA splicing or transcriptional regulation. These findings suggest that repeat-derived RNAs are important as scaffolds of RBPs and functional elements. However, the overall functional sequences of the repeat-derived RNAs are not fully understood. Here, we show the putative functional repeat-derived RNAs by analyzing the binding patterns of RBPs based on ENCODE eCLIP data. We mapped all eCLIP reads to repeat sequences and observed that 10.75 % and 7.04 % of reads on average were enriched (at least 2-fold over control) in the repeats in K562 and HepG2 cells, respectively. Using these data, we predicted functional RNA elements on the sense and antisense strands of long interspersed element 1 (LINE1) sequences. Furthermore, we found several new sets of RBPs on fragments derived from other transposable element (TE) families. Some of these fragments show specific and stable secondary structures and are found to be inserted into the introns of genes or lncRNAs. These results suggest that the repeat-derived RNA sequences are strong candidates for the functional RNA elements of endogenous noncoding RNAs.

Autoři článku: Kearnsdowling8579 (Summers Vaughn)