Kaykrag1842

Z Iurium Wiki

Of all mammalian vibrissae, those of certain species of pinnipeds are exceptional. Researchers believe that their curious undulating form evolved for hydrodynamic detection. Our understanding of how these whiskers work depends on a geometrical model that captures the crucial pertinent features of the natural vibrissae including its tapering and curvature. It should also account for the form of the whisker when it flexes under external loading. We introduce and study a normal skeleton of a two-dimensional projection of a harbour seal whisker. The normal skeleton is a complete shape descriptor that involves reduction to the centreline equipped with a thickness function of the orthogonal cross-section. The contours of the whisker shape are extracted from a 2D greyscale scan. Our analysis reveals correspondence between the undulations of the width and oscillations of the centreline curvature as functions of arc length. We discuss two possible explanations for that remarkable feature one based on consideration of growth and the other of plastic deformation. For the latter we employ a mechanical model to demonstrate appearance of curvature oscillations caused by extensive deflection of the undulating whisker due to external loading.The interfacial perpendicular magnetic anisotropy (PMA) plays a key role in spintronic applications such as memory recording and computational devices. Despite robust PMA being reported at the Fe/MgO interface, there are still inconsistencies in the disorder effects on the interfacial magnetic anisotropy. Here we reported a comprehensive study of the influence of the interfacial disorder, including the underoxidization, overoxidization, and oxygen migration, on the PMA of the Fe/MgO interface using first-principles calculations. Compared to the pristine Fe/MgO interface, the underoxidation at the Fe/MgO interface keeps the interfacial PMA but reduces the interfacial anisotropy constant (Ki). The overoxidization and oxygen migration at the interface both reduce theKiand even switch the easy magnetization axis from the out-of-plane to in-plane direction at high oxygen percentage. In all the cases, theKiwas found strongly correlated to the difference of the orbital magnetic moment along the in-plane and out-of-plane direction. Calculated layer-resolved and orbital-resolvedKirevealed that the orbital coupling between thedxyanddx2-y2states of the interfacial Fe layer plays a key role in determining the interfacial magnetic anisotropy. This work provides deep insights into the oxidation effects on the interfacial magnetic anisotropy of Fe/MgO system and a possible avenue to tune theKivia interfacial engineering.Three-dimensional (3D) transrectal ultrasound (TRUS) is utilized in prostate cancer diagnosis and treatment, necessitating time-consuming manual prostate segmentation. We have previously developed an automatic 3D prostate segmentation algorithm involving deep learning prediction on radially sampled 2D images followed by 3D reconstruction, trained on a large, clinically diverse dataset with variable image quality. As large clinical datasets are rare, widespread adoption of automatic segmentation could be facilitated with efficient 2D-based approaches and the development of an image quality grading method. The complete training dataset of 6761 2D images, resliced from 206 3D TRUS volumes acquired using end-fire and side-fire acquisition methods, was split to train two separate networks using either end-fire or side-fire images. Split datasets were reduced to 1000, 500, 250, and 100 2D images. Veliparib For deep learning prediction, modified U-Net and U-Net++ architectures were implemented and compared using an unseen tesdespread use, even when data is scarce. The development of an image quality grading scale provides a quantitative tool for assessing segmentation performance.In this study, the SnO2nanoflowers with hierarchical structures sensitized by boron nitride quantum dots (BNQDs) were prepared through a simple hydrothermal method. It was applied for the detection of the BTEX vapors. Further investigation showed that the response value of SnO2sensitized by different amounts of BNQDs to the BTEX gases have a certain improvement. Especially 10-BNQDs/SnO2gas sensor exhibited a significant improvement in gas sensing performance and its response values to different BTEX gases was increased up to 2-4 folds compared with the intrinsic SnO2sensor. In addition, SnO2nanoflowers based gas sensor showed surprisingly fast response and recovery time for BTEX gases with 1-2 s. That can be attributed to the sensitization of BNQDs and the hierarchical structure of SnO2nanoflowers, which provided an easy channel for the gas diffusion. An economically viable gas sensor based on BNQDs sensitized SnO2nanoflowers exhibited a great potential in BTEX gas detection due to the simple synthesis method, environmentally friendly raw materials and excellent gas sensing performance.Objective. Temporal resolution is a key challenge in artificial vision. Several prosthetic approaches are limited by the perceptual fading of evoked phosphenes upon repeated stimulation from the same electrode. Therefore, implanted patients are forced to perform active scanning, via head movements, to refresh the visual field viewed by the camera. However, active scanning is a draining task, and it is crucial to find compensatory strategies to reduce it.Approach. To address this question, we implemented perceptual fading in simulated prosthetic vision using virtual reality. Then, we quantified the effect of fading on two indicators the time to complete a reading task and the head rotation during the task. We also tested if stimulation strategies previously proposed to increase the persistence of responses in retinal ganglion cells to electrical stimulation could improve these indicators.Main results. This study shows that stimulation strategies based on interrupted pulse trains and randomisation of the pulse duration allows significant reduction of both the time to complete the task and the head rotation during the task.Significance. The stimulation strategy used in retinal implants is crucial to counteract perceptual fading and to reduce active head scanning during prosthetic vision. In turn, less active scanning might improve the patient's comfort in artificial vision.Few-layer graphene has been widely regarded as an efficient filter for gas separation, but the effect of the layer number on the gas permeation process is still unclear. To explore the layer number effect, we perform molecular dynamics simulations to investigate the gas permeation through a nanopore within the few-layer graphene. Our numerical simulations show that the permeation constant decreases with increasing layer number, which is analyzed based on the macroscopic Kennard empirical model. The macroscopic model is in good agreement with the numerical result in the limit of large layer number, but there are obvious deviations for the medium layer number. We generalize the macroscopic model by considering the nanoscale effect from the surface morphology of the nanoscale pore, which can well describe the layer number dependence for the gas permeation constant in the full range. These results provide valuable information for the application of few-layer graphene in the gas permeation field.Formation of Au, Pt, and bimetallic Au-Pt nanostructures by thermal dewetting of single-layer Au, Pt and bilayer Au-Pt thin films on Si substrates was systematically studied. The solid-state dewetting of both single-layer and bilayer metallic films was shown to go through heterogeneous void initiation followed by void growth via capillary agglomeration. For the single-layer of Au and Pt films, the void growth started at a temperature right above the Hüttig temperature, at which the atoms at the surface or at defects become mobile. Uniformly distributed Au (7 ± 1 nm to 33 ± 8 nm) and Pt (7 ± 1 nm) NPs with monodispersed size distributions were produced from complete dewetting achieved for thinner 1.7-5.5 nm thick Au and 1.4 nm thick Pt films, respectively. The NP size is strongly dependent on the initial thin film thickness, but less so on temperature and time. Thermal dewetting of Au-Pt bilayer films resulted in partial dewetting only, forming isolated nano-islands or large particles, regardless of sputtering order and total thin film thickness. The increased resistance to thermal dewetting shown in the Au-Pt bilayer films as compared to the individual Au or Pt layer is a reflection of the stabilizing effect that occurs upon adding Pt to Au in the bimetallic system. Energy dispersive x-ray spectroscopic analysis showed that the two metals in the bilayer films broke up together instead of dewetting individually. According to the x-ray diffraction analysis, the produced Au-Pt nanostructures are phase-segregated, consisting of an Au-rich phase and a Pt-rich phase.Physical fitness (PF) is a cornerstone of metabolic health. However, its role in maternal-fetal metabolism during pregnancy is poorly understood. The present work investigates (i) the association of PF with maternal and fetal cardiometabolic markers, and with clustered cardiometabolic risk during pregnancy, and (ii) whether being fit counteracts cardiometabolic abnormalities associated with overweight/obesity. Several PF components (flexibility, lower and upper body strength, and cardiorespiratory fitness [CRF]) were objectively assessed in 151 pregnant women at gestational weeks 16 and 33, and an overall PF cluster score calculated. At the same times, maternal glycemic and lipid markers, cortisol, and C-reactive protein were assessed with standard biochemical methods, along with blood pressure and a proxy for insulin resistance, and a cardiometabolic risk cluster score determined. These analytes were also measured in maternal and umbilical cord arterial and venous blood collected at delivery. PF was found to be associated with several maternal and a small number of fetal cardiometabolic markers (p less then .05). Lower and upper body muscle strength, CRF, overall PF (week 16), and CRF changes (weeks 16-33) were inversely associated with clustered cardiometabolic risk (p less then .05). Normal weight fit women had lower values for insulin level, insulin resistance, triglycerides, low-density lipoprotein cholesterol, C-reactive protein, and diastolic blood pressure than did overweight/obese unfit women at week 16 (p less then .05). In conclusion, greater PF, especially muscle strength and CRF in early-middle pregnancy, appears to be associated with a better metabolic phenotype, and may protect against maternal cardiometabolic risk. "Keep yourself fit and normal weight before and during early pregnancy" should be a key public health message.

The present study aimed to determine the influence of fatigue on the record power profile of professional male cyclists. We also assessed whether fatigue could differently affect cyclists of 2 competition categories.

We analyzed the record power profile in 112 professional cyclists (n = 46 and n = 66 in the ProTeam [PT] and WorldTour [WT] category, respectively; age 29 [6]y, 8 [5]y experience in the professional category) during 2013-2021 (8 [5] seasons/cyclist). We analyzed their mean maximal power (MMP) values for efforts lasting 10 seconds to 120minutes with no fatigue (after 0kJ·kg-1) and with increasing levels of fatigue (after 15, 25, 35, and 45kJ·kg-1).

A significant (P < .001) and progressive deterioration of all MMP values was observed from the lowest levels of fatigue assessed (ie,-1.6% to -3.0% decline after 15kJ·kg-1, and -6.0% to -9.7% after 45kJ·kg-1). Compared with WT, PT cyclists showed a greater decay of MMP values under fatigue conditions (P < .001), and these differences increased with accumulating levels of fatigue (decay of -1.

Autoři článku: Kaykrag1842 (Decker Fernandez)