Kaufmanmunkholm5749
0×10^-21 e cm on the amplitude of oscillations of the neutron electric dipole moment and 4.3×10^-6 on the amplitude of oscillations of CP-violating θ parameter of quantum chromodynamics. Our results demonstrate the feasibility of using solid-state nuclear magnetic resonance to search for axionlike dark matter in the neV mass range.We theoretically show that a superposition of plane waves causes small (compared to the wavelength) particles dispersed in a fluid to assemble in quasiperiodic two or three-dimensional patterns. We experimentally demonstrate this theory by using ultrasound waves to assemble quasiperiodic patterns of carbon nanoparticles in water using an octagonal arrangement of ultrasound transducers, and we document good agreement between theory and experiments. The theory also applies to obtaining quasiperiodic patterns in other situations where particles move with linear waves, such as optical lattices.We report, for the first time, the long-awaited detection of diffuse gamma rays with energies between 100 TeV and 1 PeV in the Galactic disk. Particularly, all gamma rays above 398 TeV are observed apart from known TeV gamma-ray sources and compatible with expectations from the hadronic emission scenario in which gamma rays originate from the decay of π^0's produced through the interaction of protons with the interstellar medium in the Galaxy. This is strong evidence that cosmic rays are accelerated beyond PeV energies in our Galaxy and spread over the Galactic disk.Heralded entangling quantum gates are an essential element for the implementation of large-scale optical quantum computation. Yet, the experimental demonstration of genuine heralded entangling gates with free-flying output photons in linear optical system, was hindered by the intrinsically probabilistic source and double-pair emission in parametric down-conversion. Here, by using an on-demand single-photon source based on a semiconductor quantum dot embedded in a micropillar cavity, we demonstrate a heralded controlled-NOT (CNOT) operation between two single photons for the first time. To characterize the performance of the CNOT gate, we estimate its average quantum gate fidelity of (87.8±1.2)%. As an application, we generated event-ready Bell states with a fidelity of (83.4±2.4)%. Our results are an important step towards the development of photon-photon quantum logic gates.The appearance of half-quantized thermal Hall conductivity in α-RuCl_3 in the presence of in-plane magnetic fields has been taken as a strong evidence for the Kitaev spin liquid. Apart from the quantization, the observed sign structure of the thermal Hall conductivity is also consistent with predictions from the exact solution of the Kitaev honeycomb model. Namely, the thermal Hall conductivity changes sign when the field direction is reversed with respect to the heat current, which is perpendicular to one of the three nearest neighbor bonds on the honeycomb lattice. On the other hand, the thermal Hall conductivity is almost zero when the field is applied along the bond direction. Here, we theoretically demonstrate that such a peculiar sign structure of the thermal Hall conductivity is a generic property of the polarized state in the presence of in-plane magnetic fields. In this case, the thermal Hall effect arises from topological magnons with finite Chern numbers, and the sign structure follows from the symmetries of the momentum space Berry curvature. Using a realistic spin model with bond-dependent interactions, we show that the thermal Hall conductivity can have a magnitude comparable to that observed in the experiments. Hence, the sign structure alone cannot make a strong case for the Kitaev spin liquid. The quantization at very low temperatures, however, will be a decisive test as the magnon contribution vanishes in the zero temperature limit.Unusual masses of black holes being discovered by gravitational wave experiments pose fundamental questions about the origin of these black holes. Black holes with masses smaller than the Chandrasekhar limit ≈1.4 M_⊙ are essentially impossible to produce through stellar evolution. We propose a new channel for production of low mass black holes stellar objects catastrophically accrete nonannihilating dark matter, and the small dark core subsequently collapses, eating up the host star and transmuting it into a black hole. The wide range of allowed dark matter masses allows a smaller effective Chandrasekhar limit and thus smaller mass black holes. We point out several avenues to test our proposal, focusing on the redshift dependence of the merger rate. We show that redshift dependence of the merger rate can be used as a probe of the transmuted origin of low mass black holes.A typical concept in quantum state analysis is based on the idea that states in the vicinity of some pure entangled state share the same properties, implying that states with a high fidelity must be entangled. NVP-AEW541 cost States whose entanglement can be detected in this way are also called faithful. We prove a structural result on the corresponding fidelity-based entanglement witnesses, resulting in a simple condition for faithfulness of a two-party state. For the simplest case of two qubits faithfulness can directly be decided and for higher dimensions accurate analytical criteria are given. Finally, our results show that faithful entanglement is, in a certain sense, useful entanglement; moreover, they establish connections to computational complexity and simplify several results in entanglement theory.Tunable terahertz plasmons are essential for reconfigurable photonics, which have been demonstrated in graphene through gating, though with relatively weak responses. Here we demonstrate strong terahertz plasmons in graphite thin films via infrared spectroscopy, with dramatic tunability by even a moderate temperature change or an in situ bias voltage. Meanwhile, through magnetoplasmon studies, we reveal that massive electrons and massless Dirac holes make comparable contributions to the plasmon response. Our study not only sets up a platform for further exploration of two-component plasmas, but also opens an avenue for terahertz modulation through electrical bias or all-optical means.We study large networks of parametric oscillators as heuristic solvers of random Ising models. In these networks, known as coherent Ising machines, the model to be solved is encoded in the coupling between the oscillators, and a solution is offered by the steady state of the network. This approach relies on the assumption that mode competition steers the network to the ground-state solution of the Ising model. By considering a broad family of frustrated Ising models, we show that the most efficient mode does not correspond generically to the ground state of the Ising model. We infer that networks of parametric oscillators close to threshold are intrinsically not Ising solvers. Nevertheless, the network can find the correct solution if the oscillators are driven sufficiently above threshold, in a regime where nonlinearities play a predominant role. We find that for all probed instances of the model, the network converges to the ground state of the Ising model with a finite probability.The origin of a ubiquitous bosonic coupling feature in the photoemission spectra of high-T_c cuprates, an energy-momentum dispersion "kink" observed at ∼70 meV binding energy, remains a two-decade-old mystery. Understanding this phenomenon requires an accurate description of the coupling between the electron and some collective modes. We report here ab initio calculations based on GW perturbation theory and show that correlation-enhanced electron-phonon interaction in cuprates gives rise to the strong kinks, which not only explains quantitatively the observations but provides new understanding of experiments. Our results reveal it is the electron density of states being the predominant factor in determining the doping dependence of the kink size, manifesting the multiband nature of the cuprates, as opposed to the prevalent belief of it being a measure of the mode-coupling strength.The Kerr geometry admits the Carter symmetry, which ensures that the geodesic equations are integrable. It is shown that gravitational waveforms associated with extreme-mass-ratio inspirals involving a nonintegrable compact object display "glitch" phenomena, where the frequencies of gravitational waves increase abruptly, when the orbit crosses certain spacetime regions known as Birkhoff islands. The presence or absence of these features in data from upcoming space-borne detectors will therefore allow not only for tests of general relativity but also of fundamental spacetime symmetries.We propose a method to constrain the variation of the gravitational constant G with cosmic time using gravitational wave (GW) observations of merging binary neutron stars. The method essentially relies on the fact that the maximum and minimum allowed masses of neutron stars at a particular cosmic epoch have a simple dependence on the value of G at that epoch. GWs carry an imprint of the value of G at the time of the merger. Thus, if the value of G at merger is significantly different from its current value, the masses of the neutron stars inferred from the GW observations will be inconsistent with the theoretically allowed range. This enables us to place bounds on the variation of G between the merger epoch and the present epoch. Using the observation of the binary neutron star system GW170817, we constrain the fractional difference in G between the merger and the current epoch to be in the range -1≲ΔG/G≲8. Assuming a monotonic variation in G, this corresponds to a bound on the average rate of change of -7×10^-9 yr^-1≤G[over ˙]/G≤5×10^-8 yr^-1 between these epochs. Future observations will put tight constraints on the deviation of G over vast cosmological epochs not probed by other observations.Non-Fermi liquid (NFL) physics can be realized in quantum dot devices where competing interactions frustrate the exact screening of dot spin or charge degrees of freedom. We show that a standard nanodevice architecture, involving a dot coupled to both a quantum box and metallic leads, can host an exotic SO(5) symmetry Kondo effect, with entangled dot and box charge and spin. This NFL state is surprisingly robust to breaking channel and spin symmetry, but destabilized by particle-hole asymmetry. By tuning gate voltages, the SO(5) state evolves continuously to a spin and then "flavor" two-channel Kondo state. The expected experimental conductance signatures are highlighted.The intrinsic spins and their correlations are the least understood characteristics of fission fragments from both theoretical and experimental points of view. In many nuclear reactions, the emerging fragments are typically excited and acquire an intrinsic excitation energy and an intrinsic spin depending on the type of the reactions and interaction mechanism. Both the intrinsic excitation energies and the fragments' intrinsic spins and parities are controlled by the interaction mechanism and conservations laws, which lead to their correlations and determines the character of their deexcitation mechanism. We outline here a framework for the theoretical extraction of the intrinsic spin distributions of the fragments and their correlations within the fully microscopic real-time density-functional theory formalism and illustrate it on the example of induced fission of ^236U and ^240Pu, using two nuclear energy density functionals. These fission fragment intrinsic spin distributions display new qualitative features previously not discussed in literature.