Katzpotts5378
Circular RNAs (circRNAs) have emerged as important regulators of various cellular processes and have been implicated in cancer. Previously, we reported the discovery of several dysregulated circRNAs including circPABPC1 (polyadenylate-binding protein 1) in human hepatocellular carcinoma (HCC), although their roles in HCC development remained unclear. Here, we show that circPABPC1 is preferentially lost in tumor cells from clinical samples and inhibits both intrahepatic and distant metastases in a mouse xenograft model. This tumor-suppressive function of circPABPC1 can be attributed to its inhibition of cell adhesion and migration through down-regulating a key member of the integrin family, ITGB1 (β1 integrin). Mass spectrometry and biochemical evidence demonstrate that circPABPC1 directly links ITGB1 to the 26S proteasome for degradation in a ubiquitination-independent manner. Our data have revealed an uncanonical route for integrin turnover and a previously unidentified mode of action for circRNAs in HCC that can be harnessed for anticancer treatment.In melanoma, the induction of lymphatic growth (lymphangiogenesis) has long been correlated with metastasis and poor prognosis, but we recently showed it can synergistically enhance cancer immunotherapy and boost T cell immunity. Here, we develop a translational approach for exploiting this "lymphangiogenic potentiation" of immunotherapy in a cancer vaccine using lethally irradiated tumor cells overexpressing vascular endothelial growth factor C (VEGF-C) and topical adjuvants. Our "VEGFC vax" induced extensive local lymphangiogenesis and promoted stronger T cell activation in both the intradermal vaccine site and draining lymph nodes, resulting in higher frequencies of antigen-specific T cells present systemically than control vaccines. In mouse melanoma models, VEGFC vax elicited potent tumor-specific T cell immunity and provided effective tumor control and long-term immunological memory. Together, these data introduce the potential of lymphangiogenesis induction as a novel immunotherapeutic strategy to consider in cancer vaccine design.Behavioral responsiveness to external stimulation is shaped by context. We studied how sensory information can be contextualized, by examining light-evoked locomotor responsiveness of Drosophila relative to time of day. We found that light elicits an acute increase in locomotion (startle) that is modulated in a time-of-day-dependent manner Startle is potentiated during the nighttime, when light is unexpected, but is suppressed during the daytime. The internal daytime-nighttime context is generated by two interconnected and functionally opposing populations of circadian neurons-LNvs generating the daytime state and DN1as generating the nighttime state. Switching between the two states requires daily remodeling of LNv and DN1a axons such that the maximum presynaptic area in one population coincides with the minimum in the other. We propose that a dynamic model of environmental light resides in the shifting connectivities of the LNv-DN1a circuit, which helps animals evaluate ongoing conditions and choose a behavioral response.Aerosols still present the largest uncertainty in estimating anthropogenic radiative forcing. https://www.selleckchem.com/products/Vorinostat-saha.html Cloud processing is potentially important for secondary organic aerosol (SOA) formation, a major aerosol component however, laboratory experiments fail to mimic this process under atmospherically relevant conditions. We developed a wetted-wall flow reactor to simulate aqueous-phase processing of isoprene oxidation products (iOP) in cloud droplets. We find that 50 to 70% (in moles) of iOP partition into the aqueous cloud phase, where they rapidly react with OH radicals, producing SOA with a molar yield of 0.45 after cloud droplet evaporation. Integrating our experimental results into a global model, we show that clouds effectively boost the amount of SOA. We conclude that, on a global scale, cloud processing of iOP produces 6.9 Tg of SOA per year or approximately 20% of the total biogenic SOA burden and is the main source of SOA in the mid-troposphere (4 to 6 km).Circulating levels of the adipokine leptin are linked to neuropathology in experimental cerebral malaria (ECM), but its source and regulation mechanism remain unknown. Here, we show that sequestration of infected red blood cells (iRBCs) in white adipose tissue (WAT) microvasculature increased local vascular permeability and leptin production. Mice infected with parasite strains that fail to sequester in WAT displayed reduced leptin production and protection from ECM. WAT sequestration and leptin induction were lost in CD36KO mice; however, ECM susceptibility revealed sexual dimorphism. Adipocyte leptin was regulated by the mechanistic target of rapamycin complex 1 (mTORC1) and blocked by rapamycin. In humans, although Plasmodium falciparum infection did not increase circulating leptin levels, iRBC sequestration, tissue leptin production, and mTORC1 activity were positively correlated with CM in pediatric postmortem WAT. These data identify WAT sequestration as a trigger for leptin production with potential implications for pathogenesis of malaria infection, prognosis, and treatment.The five interglacials before the Mid-Brunhes Event (MBE) [c.430 thousand years (ka) ago] are generally considered to be globally cooler than those post-MBE. Inhomogeneities exist regionally, however, which suggest that the Arctic was warmer than present during Marine Isotope Stage (MIS) 15a. Using the first speleothem record for the High Arctic, we investigate the climatic response of northeast Greenland between c.588 and c.549 ka ago. Our results indicate an enhanced warmth of at least +3.5°C relative to the present, leading to permafrost thaw and increased precipitation. We find that δ18O of precipitation was at least 3‰ higher than today and recognize two local cooling events (c.571 and c.594 ka ago) thought to be caused by freshwater forcing. Our results are important for improving understanding of the regional climatic response leading up to the MBE and specifically provide insights into the climatic response of a warmer Arctic.