Kastrupmays0759

Z Iurium Wiki

Interest in cost-effective materials pushes researchers to the inexpensive and abundant semiconductors to use photons' energy for generating electrons and holes required for photocatalytic transformations. At the same time, polysilicon is one of the economic semiconductors with a disadvantage of high bandgap which could be solved by carbon-doping. We employed this strategy to the synthesis of carbon-doped polysilicon by a new approach starting from citric acid and methyltrimethoxysilane. The nanocomposite obtained was utterly characterized, and compared with bare polysilicon; increased UV-Vis absorbance and shift to higher wavelengths were the most notable characteristics of the synthesized catalyst. The carbon-doped polysilicon was modified with Pd nanoparticles to obtain a new heterogeneous photocatalyst for the formic acid degradation. The decomposition of formic acid was photocatalyzed by the obtained nanocomposite with a hydrogen production turnover frequency of up to 690 h-1. Moreover, it was demonstrated that the catalyst is stable and recyclable.A synthetic material of silicone rubber was used to construct an artificial lens capsule (ALC) in order to replicate the biomechanical behaviour of human lens capsule. The silicone rubber was characterised by monotonic and cyclic mechanical tests to reveal its hyper-elastic behaviour under uniaxial tension and simple shear as well as the rate independence. A hyper-elastic constitutive model was calibrated by the testing data and incorporated into finite element analysis (FEA). An experimental setup to simulate eye focusing (accommodation) of ALC was performed to validate the FEA model by evaluating the shape change and reaction force. The characterisation and modelling approach provided an insight into the intrinsic behaviour of materials, addressing the inflating pressure and effective stretch of ALC under the focusing process. The proposed methodology offers a virtual testing environment mimicking human capsules for the variability of dimension and stiffness, which will facilitate the verification of new ophthalmic prototype such as accommodating intraocular lenses (AIOLs).Von Willebrand Factor (vWf) is a giant multimeric extracellular blood plasma involved in hemostasis. In this work we present multi-scale simulations of its three-domains fragment A1A2A3. These three domains are essential for the functional regulation of vWf. Namely the A2 domain hosts the site where the protease ADAMTS13 cleavages the multimeric vWf allowing for its length control that prevents thrombotic conditions. The exposure of the cleavage site follows the elongation/unfolding of the domain that is caused by an increased shear stress in blood. By deploying Lattice Boltzmann molecular dynamics simulations based on the OPEP coarse-grained model for proteins, we investigated at molecular level the unfolding of the A2 domain under the action of a perturbing shear flow. We described the structural steps of this unfolding that mainly concerns the β-strand structures of the domain, and we compared the process occurring under shear with that produced by the action of a directional pulling force, a typical condition of single molecule experiments. We observe, that under the action of shear flow, the competition among the elongational and rotational components of the fluid field leads to a complex behaviour of the domain, where elongated structures can be followed by partially collapsed melted globule structures with a very different degree of exposure of the cleavage site. Our simulations pose the base for the development of a multi-scale in-silico description of vWf dynamics and functionality in physiological conditions, including high resolution details for molecular relevant events, e.g., the binding to platelets and collagen during coagulation or thrombosis.Poly(ionic liquids) (PILs) and ionenes are polymers containing ionic groups in their repeating units. The unique properties of these polymers render them as interesting candidates for a variety of applications, such as gas separation membranes and polyelectrolytes. Due to the vast number of possible structures, numerous synthesis protocols to produce monomers with different functional groups for task-specific PILs are reported in literature. A difunctional epoxy-IL resin was synthesized and cured with multifunctional amine and anhydride hardeners and the thermal and thermomechanical properties of the networks were assessed via differential scanning calorimetry and dynamic mechanical analysis. By the selection of suitable hardeners, the glass transition onset temperature (Tg,onset) of the resulting networks was varied between 18 °C and 99 °C. Copolymerization of epoxy-IL with diglycidyl ether of bisphenol A (DGEBA) led to a further increase of the Tg,onset. The results demonstrate the potential of epoxy chemistry for tailorable PIL networks, where the hardener takes the place of the ligands without requiring an additional synthesis step and can be chosen from a broad range of commercially available compounds.Die drawing is an effective method for improving the properties of polymer. In this work, polypropylene (PP)/inorganic particle composites were fabricated by a solid-state die drawing process to investigate the effects of drawing parameters, such as inorganic particles types, drawing temperature, and drawing speed, on the thermal properties, microstructure, and mechanical behavior of the drawn composites. The mechanical properties of the material were significantly improved through this processing method. For the drawn PP/inorganic particle composites with 45 wt% CaCO3, when the drawing speed was 2.0 m/min and the drawing temperature was 110 °C, the density of the drawn composites reached the lowest at 1.00 g/cm3. At this time, the tensile strength, flexural strength, and impact strength of the drawn composites were 128.32 MPa, 77.12 MPa, and 170.42 KJ/m2, respectively. This work provides a new strategy for the preparation of lightweight and high-strength PP-based composites, which have broad application prospects in the field of engineering and structural materials.The goal of the present paper was to synthesize, characterize, and evaluate the performance of the modified composite based on magnetite (Fe3O4) and polyvinyl alcohol (PVA). The obtained composite was used to degrade Methyl Orange dye from synthetic wastewater by a laboratory photocatalytic reactor. Various parameters of the photodegradation process were tested composite dosage, amount of hydrogen peroxide (H2O2), and pH. The composite was characterized by Fourier Transform Infrared (FTIR) Spectroscopy, X-ray Diffraction (XRD), and Scanning Electron Microscopy (SEM). The degradation experiments indicated that the complete dye decolorization depended on the amount of H2O2. In addition, the H2O2 could accelerate Methyl Orange degradation to more highly oxidized intermediates in the presence of UV light (99.35%). The results suggested that the obtained modified composite could be used to treat wastewater containing various types of dyes.The treatment of skin wounds poses significant clinical challenges, including the risk of bacterial infection. In particular due to its antimicrobial and tissue regeneration abilities chitosan (a polymeric biomaterial obtained by the deacetylation of chitin) has received extensive attention for its effectiveness in promoting skin wound repair. On the other hand, due to their intrinsic characteristics, metal nanoparticles (e.g., silver (Ag), gold (Au) or iron oxide (Fe3O4)) have demonstrated therapeutic properties potentially useful in the field of skin care. Therefore, the combination of these two promising materials (chitosan plus metal oxide NPs) could permit the achievement of a promising nanohybrid with enhanced properties that could be applied in advanced skin treatment. In this work, we have optimized the synthesis protocol of chitosan/metal hybrid nanoparticles by means of a straightforward synthetic method, ionotropic gelation, which presents a wide set of advantages. The synthesized hybrid NPs have undergone to a full physicochemical characterization. After that, the in vitro antibacterial and tissue regenerative activities of the achieved hybrids have been assessed in comparison to their individual constituent. As result, we have demonstrated the synergistic antibacterial plus the tissue regeneration enhancement of these nanohybrids as a consequence of the fusion between chitosan and metallic nanoparticles, especially in the case of chitosan/Fe3O4 hybrid nanoparticles.Second-generation type III-B rotaxane dendrons, equipped with succinimide and acetylene functional groups, were synthesized successfully and characterized by NMR spectroscopy and mass spectrometry. A cell viability study of a dendron with a normal cell line of L929 fibroblast cells revealed no obvious cytotoxicity at a range of 5 to 100 μM. The nontoxic properties of the sophisticated rotaxane dendron building blocks provided a choice of bio-compatible macromolecular machines that could be potentially developed into polymeric materials.Most rubbers used today rely on sulphur as a cross-linking agent and carbon black from fossil resources to modify the mechanical properties. A very promising substitute can be found in natural keratins such as feathers. These are not only tough, but also contain a relevant amount of sulphur in the form of disulphide bridges. The present study shows that these can be activated under vulcanisation conditions and then bind covalently to EPDM rubber to form a cross-linked network. Feathers were cut into lengths of 0.08, 0.2, and 1 mm and incorporated at 38, 69, or 100 phr into EPDM mixtures containing either no carbon black or no carbon black nor sulphur. The presence of feather cuttings increases the tensile and compressive strength as well as the hardness, and reduces the rebound resilience. Due to their high (approximately 17%) nitrogen content, the feathers also improve the thermal stability of the composite, as the main degradation step is shifted from 400 °C to 470 °C and the decomposition is significantly slowed down. Since elastomers are a large market and feathers in particular are a high-volume waste, the combination of these two offers enormous ecological and economic prospects.In this research work, we studied the microwave properties of multi-wall carbon nanotube (MWCNT) surface functionalized with metallic oxides composites. Three different concentrations (5%, 10%, and 20%) of metallic oxides were used, namely cobalt, iron, and cobalt ferrite. The surface-decorated CNTS were impregnated into polyurethane (PU) matrix. The surface-decorated MWCNTs and the MWCNTs-PU composites were characterized using electron microscopy. The dielectric properties of the samples are studied using an open-ended coaxial probe technique in a wide frequency range of (5-50 GHz). The metallic oxide-decorated surface MWCNTs-PU composites demonstrated different microwave-frequency absorption characteristics depending on the concentration of the metallic oxides.The effects of deproteinization using sodium hypochlorite (NaOCl) and the subsequent application of an antioxidant (sodium p-toluenesulfinate, STS) onto the bonding durability of universal adhesives on eroded dentin were investigated. Untreated sound dentin served as the control, whereas eroded dentin, which had been prepared by pH-cycling in 1% citric acid and a remineralization solution, was either untreated, deproteinized with a 10% NaOCl gel or deproteinized with the 10% NaOCl gel and subsequently treated with an STS-containing agent. The dentin surfaces were bonded using a universal adhesive (Clearfil Universal Bond Quick, Scotchbond Universal or G-Premio Bond), and the micro-tensile bond strength (µTBS) test was performed after 24 h or 10,000 thermal cycles. The µTBS data were statistically analyzed using a three-way ANOVA and Tukey's HSD post hoc tests. GS-9674 cell line The lowest µTBS was measured on untreated eroded dentin (p 0.05). This indicated that deproteinization, followed by the application of STS, could enhance the bonding durability of universal adhesives on eroded dentin.

Autoři článku: Kastrupmays0759 (Tyson Noonan)