Karstensengammelgaard6200

Z Iurium Wiki

Heat shock protein 27 (HSP27) plays an important role in protecting cells from various stress factors. This study aimed to investigate the function of HSP27 gene and its regulatory mechanism as infected by Escherichia coli (E. coli) at the tissue and cellular levels. Real-time PCR was used to detect the differential expression of HSP27 gene in F18 resistant and sensitive Sutai pigs and the differential expression upon E. coli F18ab, F18ac, K88ac bacterial supernatant, thallus infection and LPS induction in IPEC-J2. In addition, the HSP27 gene overexpression vector was constructed to detect the effect of the HSP27 gene overexpression on the adhesion of E. coli F18 to IPEC-J2, secretion of pro-inflammatory factors, and the expression of the upstream key genes in Mitogen-activated protein kinase (MAPK) pathway. Ribosomal S6 kinase (RSK2) is an important protein in the MAPK pathway. Therefore, the RSK2 gene overexpression vector was constructed and the number of colonies was counted after co-transfection of HSP27 response caused by exogenous stress and enhance the ability of IPEC-J2 to resist E. coli F18 infection. RSK2 gene in the MAPK pathway may cooperate with HSP27 gene to participate in the immune response of the organism, which provides a theoretical basis for the study of the mechanism of anti-E. coli infection in piglets.

Centella asiatica is a 'medhya-rasayana (nootrophic or memory booster)' herb that has been indicated in Ayurveda for improving memory function and treating dementia disorders. Although the neuroprotective effects of C. asiatica have been reported in earlier studies, the information on whether this nootropic herb could promote early differentiation and development of axon and dendrites in primary hippocampal neurons is currently limited.

To investigate the effects of C. asiatica and asiatic acid, one of the principal active constituents of C. asiatica, on the various stages of neuronal polarity, including early neuronal differentiation, axonal outgrowth, dendritic arborization, axonal maturation, and synaptic formation.

Embryonic rat hippocampal neurons were incubated with C. asiatica leaf extract (CAE) or asiatic acid. After an indicated time, neurons were fixed and immunolabeled to visualize the neuronal morphology. Morphometric analyses for early neuronal differentiation, axonal and dendritic maturatironal development, supporting its previously claimed neurotrophic function and suggest that this natural nootropic and its active component asiatic acid can be further investigated to explore a promising solution for degenerative brain disorders and injuries.Sirtuin 6 (SIRT6), a member of the Sirtuin family, acts as nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylase, mono-adenosine diphosphate (ADP)-ribosyltransferase, and fatty acid deacylase, and plays critical roles in inflammation, aging, glycolysis, and DNA repair. Accumulating evidence has suggested that SIRT6 is involved in brain functions such as neuronal differentiation, neurogenesis, and learning and memory. However, the precise molecular roles of SIRT6 during neuronal circuit formation are not yet well understood. In this study, we tried to elucidate molecular roles of SIRT6 on neurite development by using primary-cultured hippocampal neurons. We observed that SIRT6 was abundantly localized in the nucleus, and its expression was markedly increased during neurite outgrowth and synaptogenesis. By using shRNA-mediated SIRT6-knockdown, we show that both dendritic length and the number of dendrite branches were significantly reduced in the SIRT6-knockdown neurons. Microarray and subsequent gene ontology analysis revealed that reducing SIRT6 caused the downregulation of immediate early genes (IEGs) and alteration of several biological processes including MAPK (ERK1/2) signaling. We found that nuclear accumulation of phosphorylated ERK1/2 was significantly reduced in SIRT6-knockdown neurons. Overexpression of SIRT6 promoted dendritic length and branching, but the mutants lacking deacetylase activity had no significant effect on the dendritic morphology. Collectively, the presented findings reveal a role of SIRT6 in dendrite morphogenesis, and suggest that SIRT6 may act as an important regulator of ERK1/2 signaling pathway that mediates IEG expression, which leads to dendritic development.Alzheimer's disease (AD) is the most common neurodegenerative disease, and its incidence is increasing worldwide with increased lifespan. Currently, there is no effective treatment to cure or prevent the progression of AD, which indicates the need to develop novel therapeutic targets and agents. Sirtuins, especially SIRT3, a mitochondrial deacetylase, are NAD-dependent histone deacetylases involved in aging and longevity. Accumulating evidence indicates that SIRT3 dysfunction is strongly associated with pathologies of AD, hence, therapeutic modulation of SIRT3 activity may be a novel application to ameliorate the pathologies of AD. Natural products commonly used in traditional medicine have wide utility and appear to have therapeutic benefits for the treatment of neurodegenerative diseases such as AD. The present review summarizes the currently available natural SIRT3 activators and their potentially neuroprotective molecular mechanisms of action that make them a promising agent in the treatment and management of neurodegenerative diseases such as AD.Flowerpot method of rapid eye movement sleep (REMS) deprivation (REMSD) has been most extensively used in experiments to decipher the functions of REMS. The most common but serious criticism of this method has been presumed stress experienced by the experimental animals. The lack of systematic studies with appropriate controls to resolve this issue prompted this study. We have compared serum corticosterone levels as a marker of stress in male rats under REMSD by the flowerpot method and multiple types of control conditions. Additionally, to maintain consistency and uniformity of REMSD among groups, in the same rats, we estimated brain Na-K ATPase activity, which has been consistently reported to increase upon REMSD. The most effective method was one rat in single- or multiple-platforms set-up in a pool because it significantly increased Na-K ATPase activity without elevating serum corticosterone level. More than one rat in multiple platform set-up was ineffective and must be avoided. Also, large platform- and recovery-controls must be carried out simultaneously to rule out non-specific confounding effects.Experimental studies have indicated that prolonged ketamine exposure in neonates at anesthetic doses causes neuronal apoptosis, which contributes to long-term impairments of learning and memory later in life. The neuronal excitotoxicity mediated by compensatory upregulation of N-methyl-d-aspartate receptors (NMDARs) is proposed to be the underlying mechanism. However, this view does not convincingly explain why excitotoxicity-related apoptotic injury develops selectively in immature neurons. We proposed that the GABAA receptors (GABAARs)-mediated excitatory synaptic signaling due to high expression of the Na+-K+-2Cl- co-transporter (NKCC1), occurring during the early neuronal development period, plays a distinct role in the susceptibility of immature neurons to ketamine-induced injury. Using whole-cell patch-clamp recordings from the forebrain slices containing the anterior cingulate cortex, we found that in vivo repeated ketamine administration significantly induced neuronal hyperexcitability in neonatal, but not adolescent, rats. Such hyperexcitability was accompanied by the increase both in GABAAR- and NMDAR-mediated synaptic transmissions. An interference with the NKCC1 by bumetanide treatment completely reversed these enhanced effects of ketamine exposure and blocked GABAAR-mediated postsynaptic current activity. Thus, these findings were significant as they showed, for the first time, that GABAAR-mediated excitatory action may contribute distinctly to neuronal excitotoxic effects of ketamine on immature neurons in the developing brain.Vitronectin, an extracellular matrix protein, controls the differentiation of cerebellar granule cell precursors (CGCPs) via αvβ5 integrin, particularly in the initial stage of differentiation to granule cells. In this study, we determined whether vitronectin regulates axon specification in this initial differentiation stage of CGCPs. First, we analyzed whether vitronectin deficiency, β5 integrin knockdown (KD), and β5 integrin overexpression affect axon specification of primary cultured CGCPs. Vitronectin deficiency and β5 integrin KD inhibited axon formation, while vitronectin administrated- and β5 integrin overexpressed-neurons formed multiple axons. Moreover, KD of β5 integrin suppressed vitronectin-induced multiple axon formation. These findings indicate that vitronectin contributes to regulating axon specification via αvβ5 integrin in CGCPs. Next, we determined the signaling pathway involved in regulating vitronectin-induced axon specification. Wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3K), inhibited vitronectin-induced multiple axon specification, and lithium chloride, an inhibitor of glyocogen synthase kinase 3 beta (GSK3β), attenuated the inhibitory effect of vitronectin-KO and β5 integrin KD on the specification of CGCPs. In addition, vitronectin induced the phosphorylation of protein kinase B (Akt) and GSK3β in neuroblastoma Neuro2a cells. Taken together, our results indicate that vitronectin plays an important factor in axon formation process in CGCPs via a β5 integrin/PI3K/GSK3β pathway.Mitragynine is the main alkaloid isolated from the leaves of Mitragyna speciosa Korth (Kratom). Kratom has been widely used to relieve pain and opioid withdrawal symptoms in humans but may also cause memory deficits. Here we investigated the changes in brain electroencephalogram (EEG) activity after acute and chronic exposure to mitragynine in freely moving rats. Vehicle, morphine (5 mg/kg) or mitragynine (1, 5 and 10 mg/kg) were administered for 28 days, and EEG activity was repeatedly recorded from the frontal cortex, neocortex and hippocampus. Repeated exposure to mitragynine increased delta, but decreased alpha powers in both cortical regions. It further decreased delta power in the hippocampus. These findings suggest that acute and chronic mitragynine can have profound effects on EEG activity, which may underlie effects on behavioral activity and cognition, particularly learning and memory function.Considering that post-menopausal women and ovariectomized rodents develop obesity associated with increased visceral fat, this study was developed to investigate if liraglutide, a glucagon-like peptide 1 (GLP1) analogue, could improve the metabolism of estrogen (E2) deficient females. Wistar rats were ovariectomized (OVX), and subdivided in four groups sham saline, sham liraglutide, OVX saline, and OVX liraglutide. After sixty days, metabolic parameters of blood, heart, liver, brown (BAT) and white adipose tissue (WAT) visceral depots, and, heart oxidative homeostasis, were evaluated. Castration increased the animals' body weight, the relative weight of the WAT depots, hepatic triglycerides and cardiac glycogen content. Liraglutide treatment reversed these effects, decreased WAT depots weight and increased glucose oxidation and lipogenesis in BAT and WAT. In addition, liraglutide enhanced adrenalin (A) lipolytic effect. These results indicate that liraglutide may be a promising treatment to restore lipid homeostasis and prevent weight gain associated with E2 deficiency.

Autoři článku: Karstensengammelgaard6200 (Ryan Neumann)