Karstensenbowles3937
The significance of this work is that ambient PM2.5 is a direct transmission mode for influenza virus infection to the human alveolar epithelium. The concentration of PM2.5 was 11.7 ± 5.5 μg/m3 in Taipei during 24 December 2019-13 January 2020. Approximately 79% of inhaled PM2.5 is able to reach the upper-to-lower airway, and 47% of PM2.5 is able to reach the alveolar epithelium for influenza virus infection. Influenza A and B viruses were detected in PM2.5 on 9 days, and the influenza A/H5 virus was detected on 15 days during the study period. FL and Pyr were negatively correlated with the influenza A virus. D(ah)P and Acp were positively correlated with the influenza B and A/H5 viruses, respectively. Cd, V, and Zn were positively correlated with the influenza A, B, and A/H5 viruses, respectively. Next, influenza A, B, and A/H5 viral plasmids interacted with carbon black, H2O2, DEPs, and UD. We observed that H2O2 significantly decreased levels of complementary DNA of the three influenza viruses. Linsitinib DEPs and UD significantly decreased influenza A and A/H5 viral levels. In conclusion, chemicals in PM2.5 may play vital roles in terms of viable influenza virus in the atmosphere.The pollution of water with heavy metal ions has generated great concern among both the public and academics due to the high toxicity, persistence, and non-degradability of heavy metals. The detection, detoxification, and removal of heavy metal ions are critical for monitoring water quality and treating polluted water. However, these tasks remain challenging due to lack of effective detection, detoxification, and removal strategies. By combining thiol-triggered click chemistry and heavy metal ion-triggered declick chemistry, a recyclable fluorescent probe for detecting numerous heavy metal ions was successfully developed through simple addition of thiol-containing heavy metal antidote to a carefully selected Michael acceptor-type fluorophore. The probe could be regenerated by adding equal amount of antidote to the detection solution without any purification step recycled up to 10 times. The generated water-soluble heavy metal ion-antidote complexes showed weak toxicity to biological systems, indicating successful detoxification. Finally, a simple, economical, and practical device for detecting, detoxifying, and removing heavy metal ions was fabricated by loading the recyclable fluorescent probe into polymer beads. The percent of detection, and removal are 98.10% and 97.59%, respectively. And detoxification percent is as high as 65.55%. The device is a promising candidate for water quality monitoring and treatment.At present, the uptake and accumulation of nanoplastics by plants have raised particular concerns. However, molecular mechanisms underlying nanoplastic phytotoxicity are still vague and insufficient. To address this scientific gap, we analyzed the transcriptome response of hydroponically grown wheat (Triticum aestivum L.) to polystyrene nanoplastics (PSNPs) (100 nm) by integrating the differentially expressed gene analysis (DEGA) and the weighted gene correlation network analysis (WGCNA). PSNPs could significantly shape the gene expression patterns of wheat in a tissue-specific manner. Four candidate modules and corresponding hub genes associated with plant traits were identified using WGCNA. PSNPs significantly altered carbon metabolism, amino acid biosynthesis, mitogen-activated protein kinase (MAPK) signaling pathway-plant, plant hormone signal transduction, and plant-pathogen interaction Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. In addition, some Gene Ontology (GO) terms associated with the metal ion transport were further screened. These findings shed new light on the phytotoxic mechanism and environmental implication behind the interaction of nanoplastics and crop plants, and advance our understanding of the potential adverse effect induced by the presence of nanoplastics in agricultural systems.The effects of organic acids on hexavalent chromium (Cr(VI)) removal by reduced iron-based materials have been extensively studied. Nevertheless, the promotion mechanism from the perspective of the electron transfer process is still unclear. Herein, sulfidated nanoscale zero-valent iron (S-nZVI) and the selected organic acids, citric acid (containing both -OH and -COOH groups) and oxalic acid (containing only -COOH groups), showed significant synergistic promotion effects in Cr(VI) removal. The FeS and FeS2 on S-nZVI surface could enhance the Cr(VI) reduction as the reductive entity and electron conductor. Furthermore, even though the reactivity of FeS with Cr(VI) is higher than that with FeS2, the Cr(VI) removal efficiency by FeS2 was much higher than that by FeS with organic acids. Under neutral and alkaline conditions (pH 6.0-8.0), organic acids promoted the diffusion, adsorption and complexation of Cr(VI) on S-nZVI surface, thus enhancing the electron selectivity towards Cr(VI). However, when the solution pH changed to acidic conditions (pH 4.0), organic acids facilitated the dissolution of Fe(II) ions from S-nZVI and enhanced the electron utilization towards Cr(VI) via the fast Fe(III) reduction process. This study provided a new insight into the Cr(VI) removal, which was beneficial to understand the application boundaries of S-nZVI for Cr(VI) remediation.Herein, we reported a tandem multilevel reactive electrochemical membrane (REM) system was promising for the rapid and complete removal of trace antibiotics from natural waters. Results indicate that a four-stage REM module-in-series system achieved steady over 98% removal of model antibiotic norfloxacin (NOR, 100 μg·L-1) from wastewater treatment plant final effluent and surface water with a residence time of 5.4 s, and the electric energy consumption was only around 0.007-0.011 kWh·m-3. As for the oxidation mechanism, direct electron transfer (DET) oxidation process played an important role in NOR rapid oxidation, enabling the REM system to tolerate various •OH scavenges in natural waters, including natural organic matters, Cl- and HCO3-, even at very high concentration levels. Meanwhile, •OH-mediated indirect oxidation process promotes the oxidation and mineralization of NOR. Although the DET-dominated oxidation mechanism makes the REM system cannot achieve the complete mineralization of NOR with residence times of few seconds, the antibacterial activity from NOR was completely eliminated. This REM system featured effective removal performance of trace contaminants with low energy cost and was tolerant to complex waster matrix, suggesting that it could be a powerful supplementary step for wastewater/water treatment.In this study, Cucurbita pepo L., one of the most cultivated, consumed and economically important crop worldwide, was used as model plant to test the toxic effects of the four most abundant microplastics identified in contaminated soils, i.e. polypropylene (PP), polyethylene (PE), polyvinylchloride (PVC), and polyethyleneterephthalate (PET). Cucurbita plants were grown in pots with increasing concentrations of the microplastics, then plant biometry, photosynthetic parameters and ionome of treated vs. untreated samples were compared to evaluate the toxicity of each plastic. All the pollutants impaired root and, especially, shoot growth. Specific and concentration-dependant effects of the different microplastics were found, including reduction in leaf size, chlorophyll content and photosynthetic efficiency, as well as changes in the micro- and macro-elemental profile. Among all the microplastics, PVC was identified as the most toxic and PE as the less toxic material. PVC decreased the dimensions of the leaf lamina, the values of the photosynthetic performance index and the plant iron concentration to a higher extent in respect to the other treatments. Microplastic toxicity exerted on the growth of C. pepo raises concerns about possible yield and economic loss, as well as for risks of a possible transfer into the food chain.The study evaluated the impact of ingestion of microplastics on accumulation, survival, opercular respiratory rate (ORR), and swimming performance of Clarias gariepinus, the African freshwater catfish exposed to polyethylene microplastics. Juveniles were exposed for 4 days to 50-500 µm low-density polyethylene (LDPE) microplastics at four different concentrations (0.5, 1.0, 1.5, and 2.0 g/L). After 4 days of exposure, the concentration of microplastics in the gastrointestinal tract (GIT) of the fish increased with increasing concentrations of microplastics. Mean weights of microplastics in the GIT of the fish ranged from 0.0025 ± 0.001 g to 0.054 ± 0.01 g, suggesting that the fish were unable to detect and avoid ingesting the microplastics. No mortality was observed in all the treatment concentrations except in the highest concentration (2 g/L) where 10% mortality was observed. The results showed that ORR increased in a concentration and time-dependent manner. Compared with the control group, the swimming speed, travel distance and movement patterns of the fish exposed to microplastics were significantly reduced (p less then 0.05). Therefore, this study helps understand the environmental impact of microplastics on C. gariepinus in freshwater environments.Soil pollution is a critical environmental challenge the substances released in the soil can adversely affect humans and the ecosystem. Several bioassays were developed to investigate the soil ecotoxicity of chemicals with soil microbes, plants, invertebrates and vertebrates. The 28-day collembolan reproduction test with the springtail Folsomia candida is a recently introduced bioassay described by OECD guideline 232. Although the importance of springtails for maintaining soil quality, toxicity data for Collembola are still limited. We have developed two QSAR models for the prediction of reproductive toxicity induced by organic compounds in Folsomia candida using 28 days NOEC data. We assembled a dataset with the highest number of compounds available so far 54 compounds were collected from publicly available sources, including plant protection products, reactive intermediates and industrial chemicals, household and cosmetic ingredients, drugs, environmental transformation products and polycyclic aromatic hydrocarbons. The models were developed using partial least squares regression (PLS) and the Monte Carlo technique with respectively the open source tools Small Dataset Modeler and CORAL software. Both QSAR models gave good predictive performance even though based on a small dataset, so they could serve for the ecological risk assessment of chemicals for terrestrial organisms.In this study, two-compartment membrane electrochemical remediation (MER) based on the anode process and the cathode process strategies were compared for treating a multi metal -contaminated soil. Remediation effect, as well as energy consumption and risk evaluation of the two strategies under different current density conditions of electroplating-contaminated soil suspension were performed, the following conclusions were drawn. MERs based on both the anode and cathode processes exhibited a synergetic effect because the DC electric field and extractants dissolved more metals from the soil phase into the liquid phase of the suspension compared to a usual soil washing treatment. The maximum Cr, Cu, and Ni removal efficiencies of MERs based on the anode process were 79.5%, 86.2%, and 85.0%, respectively, compared to 27.5%, 72.5%, and 65.9% based on the cathode process. Risk assessment results showed lower soil environmental risk after MER based on the cathode process than after MER based on the anode process. In this study, MER based on the cathode process as an evolving soil remediation strategy was found to present high simultaneous remediation ability for soil heavy metals and leaching materials, showing its advantages of environmental friendliness and economic effectiveness.