Karlssonkjellerup6853

Z Iurium Wiki

Thanks to the long-range carrier migration and ultrafast interfacial transfer, highly efficient (>90%) energy transfer to WSe2 can be achieved with CsPbBr3 film as thick as ∼180 nm, which can capture most of the light above its band gap. The efficient light and energy harvesting in perovskite/TMD 3D/2D heterostructures suggest great promise in optoelectronic and photonic devices.Triboelectric nanogenerators (TENGs) are newly developed energy-harvesting mechanisms, which can efficiently transmute irregular mechanical energy into scarce electrical energy. However, the electrical performance of TENGs shows a decreasing tendency with the increase in temperature, and the negative effect caused by friction heat and operating environmental thermal stresses for the output performance, durability, and reliability are still a bottleneck, restricting the practical application of TENG electronic devices. Especially for wearable TENG devices, the heat-induced temperature rise evokes extreme discomfort and even hazards to human health. To effectively suppress the thermal negative effect and maintain the high-temperature steady electrical performance of TENGs, a novel thermo-regulating TENG (Tr-TENG) based on phase change materials (PCMs) is designed. The results state clearly that the Tr-TENG can maintain steady output performance without deterioration by the introduction of PCMs, during continuous heating and natural cooling, while the output performance of conventional TENG is decayed by 18.33%. More importantly, the Tr-TENG possesses high-efficiency thermal management ability, resulting in its improved durability, reliability, and thermal comfort. This study creates new possibilities for the development of advanced multifunctional TENGs with attractive characteristics and desirable performances and promotes the application of TENG electronic devices in harsh environments.Developing highly active water splitting electrocatalysts with ordered micro/nanostructures and uniformly distributed active sites can meet the increasing requirement for sustainable energy storage/utilization technologies. However, the stability of complicated structures and active sites during a long-term process is also a challenge. Herein, we fabricate a novel approach to create sufficient atomic defects via N2 plasma treatment onto parallel aligned NiMoO4 nanosheets, followed by refilling of these defects via heterocation dopants and stabilizing them by annealing. The parallel aligned nanosheet arrays with an open structure and quasi-two-dimensional long-range diffusion channels can accelerate the mass transfer at the electrolyte/gas interface, while the incorporation of Fe/Pt atoms into defect sites can modulate the local electronic environment and facilitate the adsorption/reaction kinetics. The optimized Pt-NP-NMC/CC-5 and Fe-NP-NMC/CC-10 electrodes exhibit low overpotentials of 71 and 241 mV at 10 mA cm-2 for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), respectively, and the assembled device reveals a low voltage of 1.55 V for overall water splitting. This plasma-induced high-efficiency defect engineering and coupled active site stabilization strategy can be extended to large-scale fabrication of high-end electrocatalysts.We quantify the mechanisms for manganese (Mn) diffusion through graphene in Mn/graphene/Ge (001) and Mn/graphene/GaAs (001) heterostructures for samples prepared by graphene layer transfer versus graphene growth directly on the semiconductor substrate. These heterostructures are important for applications in spintronics; however, challenges in synthesizing graphene directly on technologically important substrates such as GaAs necessitate layer transfer and annealing steps, which introduce defects into the graphene. In situ photoemission spectroscopy measurements reveal that Mn diffusion through graphene grown directly on a Ge (001) substrate is 1000 times lower than Mn diffusion into samples without graphene (Dgr,direct ∼ 4 × 10-18 cm2/s, Dno-gr ∼ 5 × 10-15 cm2/s at 500 °C). Transferred graphene on Ge suppresses the Mn in Ge diffusion by a factor of 10 compared to no graphene (Dgr,transfer ∼ 4 × 10-16 cm2/s). For both transferred and directly grown graphene, the low activation energy (Ea ∼ 0.1-0.5 eV) suggests that Mn diffusion through graphene occurs primarily at graphene defects. This is further confirmed as the diffusivity prefactor, D0, scales with the defect density of the graphene sheet. Similar diffusion barrier performance is found on GaAs substrates; however, it is not currently possible to grow graphene directly on GaAs. Our results highlight the importance of developing graphene growth directly on functional substrates to avoid the damage induced by layer transfer and annealing.Encrypted storage of optical information has attracted increasing interest for anticounterfeiting, information transmission, and military applications. In this study, an inverse opal-structured titanium dioxide/heptadecafluorodecyltrimethoxysilane (IOS-T/F) panel is developed. Based on a unique wetting-enhanced mechanism of structural color vision derived from a reduced light scattering and strengthened effective refractive index, this panel is capable of reversible writing/erasing and encryption/decryption of optical information. Multiple levels of information can be compiled, concealed, and erased simply using controlled ultraviolet irradiation to form patterned hydrophilic/hydrophobic differences, and the process of revealing or concealing the information only requires a few drops of water or evaporation, respectively. Importantly, the functions of the IOS-T/F panel can be well maintained under harsh conditions, including strongly acidic/alkaline environments or extreme temperatures (from -40 to 80 °C), as well as can be recovered after staining by various pollutants. This system provides simple encryption, rapid decryption, and the ability to store multiple sets of information under diverse application scenarios, which represents a novel material design strategy for security-related applications and smart optical systems.An effective intensity-based reference is a cornerstone for quantitative nuclear magnetic resonance (NMR) studies, as the molecular concentration is encoded in its signal. In theory, NMR is well suited for the measurement of competitive protein adsorption onto nanoparticle (NP) surfaces, but current referencing systems are not optimized for multidimensional experiments. Presented herein is a simple and novel referencing system using 15N tryptophan (Trp) as an external reference for 1H-15N 2D NMR experiments. The referencing system is validated by the determination of the binding capacity of a single protein onto gold NPs. Then, the Trp reference is applied to protein mixtures, and signals from each protein are accurately quantified. All results are consistent with previous studies, but with substantially higher precision, indicating that the Trp reference can accurately calibrate the residue peak intensities and reduce systematic errors. Finally, the proposed Trp reference is used to kinetically monitor in situ and in real time the competitive adsorption of different proteins. As a challenging test case, we successfully apply our approach to a mixture of protein variants differing by only a single residue. Glutaraldehyde Our results show that the binding of one protein will affect the binding of the other, leading to an altered NP corona composition. This work therefore highlights the importance of studying protein-NP interactions in protein mixtures in situ, and the referencing system developed here enables the quantification of binding kinetics and thermodynamics of multiple proteins using various 1H-15N 2D NMR techniques.Developing spherical nucleic acids with new structures holds great promise for nanomedicine and bioanalytical fields. Covalent organic frameworks (COFs) are emerging promising materials with unique properties for a wide range of applications. However, devising COF-based spherical nucleic acid is challenging because methods for the preparation of functionalized COFs are still limited. We report here a bonding defect-amplified modification (BDAM) strategy for the facile preparation of functionalized COFs. Poly(acrylic acid) was employed as the defect amplifier to modify the surface of COF nanoparticles by the formation of amide bonds with amino residues, which successfully converted and amplified the residues into abundant reactive carboxyl groups. Then, amino terminal-decorated hairpin DNA was densely grafted onto the surface of COF nanoparticles (NPs) to give rise to a spherical nucleic acid probe (SNAP). A series of experiments and characterizations proved the successful preparation of the COF-based SNAP, and its application in specifically lighting up RNA biomarkers in living cells for cancer diagnostic imaging was demonstrated. Therefore, the COF-based SNAP is a promising candidate for biomedical applications and the proposed BDAM represents a useful strategy for the preparation of functionalized COFs for diverse fields.Photoassisted electrocatalysis (P-EC) emerges as a rising star for hydrogen production by embedding photoactive species in electrocatalysts, for which the interfacial structure design and charge transfer kinetics of the multifunctional catalysts remain a great challenge. Herein, Zn-AgIn5S8 quantum dots (ZAIS QDs) were embedded into 2D NiFe layered double hydroxide nanosheets through a simple hydrothermal treatment to form 0D/2D composite catalysts for P-EC. With evidence from transient photovoltage spectroscopy, we acquired a clear and fundamental understanding on the kinetics of charge extraction time and extraction amount in the 0D/2D heterojunctions that was proved to play a key role in P-EC. Upon light illumination, for HER, the optimized NiFe-ZAIS exhibits obviously reduced overpotentials of 129 and 242 mV at current densities of 10 and 50 mA cm-2, which are 22 and 33 mV lower than those of dark electrocatalysis, respectively. For OER, the NiFe-ZAIS electrode also shows low overpotentials of 220 and 268 mV at current densities of 10 and 50 mA cm-2, respectively, under light illumination, which were able to almost double the intrinsic activity. Finally, with NF@NiFe-ZAIS as both the cathode and the anode, the assembled electrolyzer only requires 1.62 V to reach the overall water splitting current density of 10 mA cm-2 under P-EC. This work provides a useful example for the profound understanding of the design and the kinetics study of multifunctional P-EC catalysts.Colorimetric starch film containing anthocyanins is extensively used in eco-friendly intelligent food packaging, but its high water wettability limits its practical application in the food industry. Herein, a super anti-wetting colorimetric starch film was prepared by surface modification with a nano-starch/poly(dimethylsiloxane) (PDMS) composite coating. The water sensitivity, optical properties, mechanical properties, surface morphology, and surface chemical composition of this film were systemically investigated by multiple methods. The obtained film exhibited an extremely high water contact angle (152.46°) and low sliding angle (8.15°) owing to the hierarchical micro-/nanostructure formed by nano-starch aggregates combined with the low-surface-energy PDMS covering. The anti-wettability, optical barrier, and mechanical properties of this film were also significantly improved. The self-cleaning and liquid-food-repelling abilities of this film were comprehensively confirmed. Moreover, this super anti-wetting colorimetric starch film can be applied to monitor the freshness of aquatic products without being disabled by water.

Autoři článku: Karlssonkjellerup6853 (Schmidt Kehoe)