Kaasguldager6987
Here we will first describe the structure of the prion protein and the hypothesized interplay with its pathological counterpart PrPSc and then we will recapitulate the most relevant discoveries regarding the role of PrPC in the interaction with aggregated forms of other neurodegeneration-associated proteins.The misfolding, aggregation, and deposition of specific proteins is the key hallmark of most progressive neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS). ALS is characterized by the rapid and progressive degenerations of motor neurons in the spinal cord and motor cortex, resulting in paralysis of those who suffer from it. Brensocatib order Pathologically, there are three major aggregating proteins associated with ALS, including TAR DNA-binding protein of 43kDa (TDP-43), superoxide dismutase-1 (SOD1), and fused in sarcoma (FUS). While there are ALS-associated mutations found in each of these proteins, the most prevalent aggregation pathology is that of wild-type TDP-43 (97% of cases), with the remaining split between mutant forms of SOD1 (~2%) and FUS (~1%). Considering the progressive nature of ALS and its association with the aggregation of specific proteins, a growing notion is that the spread of pathology and symptoms can be explained by a prion-like mechanism. Prion diseases are a group of highly infectious neurodegenerative disorders caused by the misfolding, aggregation, and spread of a transmissible conformer of prion protein (PrP). Pathogenic PrP is capable of converting healthy PrP into a toxic form through template-directed misfolding. Application of this finding to other neurodegenerative disorders, and in particular ALS, has revolutionized our understanding of cause and progression of these disorders. In this chapter, we first provide a background on ALS pathology and genetic origin. We then detail and discuss the evidence supporting a prion-like propagation of protein misfolding and aggregation in ALS with a particular focus on SOD1 and TDP-43 as these are the most well-established models in the field.The ordered assembly of a small number of proteins into amyloid filaments is central to age-related neurodegenerative diseases. Tau is the most commonly affected of these proteins. In sporadic diseases, assemblies of tau form in a stochastic manner in certain brain regions, from where they appear to spread in a deterministic way, giving rise to disease symptoms. Over the past decade, multiple lines of evidence have shown that assembled tau behaves like a prion. More recently, electron cryo-microscopy of tau filaments has shown that distinct conformers are present in different diseases, with no inter-individual variation for a given disease.Misfolding and aggregation of proteins play a central role in the pathogenesis of several neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's and Lewy Body diseases, Frontotemporal Lobar Degeneration and prion diseases. Increasing evidence supports the view that Aβ and tau, which are the two main molecular players in AD, share with the prion protein several "prion-like" features that can be relevant for disease pathogenesis. These features essentially include structural/conformational/biochemical variations, resistance to degradation by endogenous proteases, seeding ability, attitude to form neurotoxic assemblies, spreading and propagation of toxic aggregates, transmissibility of tau- and Aβ-related pathology to animal models. Following this view, part of the recent scientific literature has generated a new reading frame for AD pathophysiology, based on the application of the prion paradigm to the amyloid cascade hypothesis in an attempt to definitely explain the key events causing the disease and inducing its occurrence under different clinical phenotypes.Since their original identification, prions have represented enigmatic agents that defy the classical concept of genetic inheritance. For almost four decades, the high-resolution structure of PrPSc, the infectious and misfolded counterpart of the cellular prion protein (PrPC), has remained elusive, mostly due to technical challenges posed by its high insolubility and aggregation propensity. As a result, such a lack of information has critically hampered the search for an effective therapy against prion diseases. Nevertheless, multiple attempts to get insights into the structure of PrPSc have provided important experimental constraints that, despite being at limited resolution, are paving the way for the application of computer-aided technologies to model the three-dimensional architecture of prions and their templated replication mechanism. Here, we review the most relevant studies carried out so far to elucidate the conformation of infectious PrPSc and offer an overview of the most advanced molecular models to explain prion structure and conversion.The transmission of prions between species is typically an inefficient process due to the species barrier, which represents incompatibility between prion seed and substrate molecules. Bank voles (Myodes glareolus) are an exception to this rule, as they are susceptible to a diverse range of prion strains from many different animal species. In particular, bank voles can be efficiently infected with most types of human prions and have played a critical role in validating variably protease-sensitive prionopathy (VPSPr) and certain forms of Gerstmann-Sträussler-Scheinker (GSS) disease as bona fide prion disorders rather than non-transmissible proteinopathies. The bank vole prion protein (BVPrP) confers a "universal prion acceptor" phenotype when expressed in mice and when used as a substrate for in vitro prion amplification assays, indicating that the unique prion transmission properties of bank voles are mediated by BVPrP. Over-expression of BVPrP in mice can also promote the spontaneous development of prion disease, indicating that BVPrP is intrinsically prone to both spontaneous and template-directed misfolding. Here, we discuss the utility of bank voles and BVPrP for prion research and how they have provided new tools for establishing rapid animal bioassays, modeling spontaneous prion disease, standardizing prion diagnostics, and understanding the molecular basis of the species barrier.Prions are unique agents that challenge the molecular biology dogma by transmitting information on the protein level. They cause neurodegenerative diseases that lack of any cure or treatment called transmissible spongiform encephalopathies. The function of the normal form of the prion protein, the exact mechanism of prion propagation between species as well as at the cellular level and neuron degeneration remains elusive. However, great amount of information known for all these aspects has been achieved thanks to the use of animal models and more precisely to transgenic mouse models. In this chapter, the main contributions of these powerful research tools in the prion field are revised.Transmissible spongiform encephalopathies or prion diseases describe a number of different human disorders that differ in their clinical phenotypes, which are nonetheless united by their transmissible nature and common pathology. Clinical variation in the absence of a conventional infectious agent is believed to be encoded by different conformations of the misfolded prion protein. This misfolded protein is the target of methods designed to prevent disease transmission in a surgical setting and reduction of the misfolded seed or preventing its continued propagation have been the focus of therapeutic strategies. It is therefore possible that strain variation may influence the efficacy of prevention and treatment approaches. Historically, an understanding of prion disease transmission and pathogenesis has been focused on research tools developed using agriculturally relevant strains of prion disease. However, an increased understanding of the molecular biology of human prion disorders has highlighted differences not only between different forms of the disease affecting humans and animals but also within diseases such as Creutzfeldt-Jakob Disease (CJD), which is represented by several sporadic CJD specific conformations and an additional conformation associated with variant CJD. In this chapter we will discuss whether prion strain variation can affect the efficacy of methods used to decontaminate prions and whether strain variation in pre-clinical models of prion disease can be used to identify therapeutic strategies that have the best possible chance of success in the clinic.Human prion disease may present in a non-specific way and is often diagnosed at a relatively late stage of the illness. Until recently, clinical diagnosis has been supported by tests that are mostly non-specific and, sometimes, insensitive. Recent laboratory developments have led to a variety of tests that rely on a disease-specific mechanism. One test, the CSF RT-QuIC (Real-Time Quaking-Induced Conversion) test is very sensitive and specific for sporadic CJD and is now used in routine clinical practice. Other tests, based on other tissues, including blood and urine, have been developed and potentially could improve both clinical diagnostic accuracy and lead to earlier diagnosis. While there are yet no proven treatments for prion disease, any treatment to be developed will almost certainly require earlier diagnosis if therapeutic success is to be realized.
Diethyl phthalate (DEP) is widely used in many commercially available products including plastics and personal care products. DEP has generally not been found to share the antiandrogenic mode of action that is common among other types of phthalates, but there is emerging evidence that DEP may be associated with other types of health effects.
To inform chemical risk assessment, we performed a systematic review to identify and characterize outcomes within six broad hazard categories (male reproductive, female reproductive, developmental, liver, kidney, and cancer) following exposure of nonhuman mammalian animals to DEP or its primary metabolite, monoethyl phthalate (MEP).
A literature search was conducted in online scientific databases (PubMed, Web of Science, Toxline, Toxcenter) and Toxic Substances Control Act Submissions, augmented by review of online regulatory sources as well as forward and backward searches. Studies were selected for inclusion using PECO (Population, Exposure, Comparator, Outcome) cvaluate these outcomes and strengthen confidence in this database.
These results suggest that DEP exposure may induce androgen-independent male reproductive toxicity (i.e., sperm effects) as well as developmental toxicity and hepatic effects, with some evidence of female reproductive toxicity. More research is warranted to fully evaluate these outcomes and strengthen confidence in this database.
The COVID-19 pandemic has had a significant impact on Spanish hospitals, which have had to allocate all available resources to treat these patients, reducing the ability to attend other common pathologies. The aim of this study is to analyze how the treatment of acute appendicitis has been affected.
A national descriptive study was carried out by a online voluntary distribution of a specific questionnaire with Google Drive™ distributed by email by the Spanish Association of Surgeons (AEC) to all affiliated surgeons actually working in Spain (5203) opened from April 14th to April 24th.
We received 337 responses from 170 centers. During the first month of the pandemic the incidence of acute appendicitis has decreased. Although conservative management has increased, surgical option has been the most used in both simple and complicated appendicitis. Despite the fact that the laparoscopic approach continues to be the most widely used in our services, the open approach has increased during this pandemic period.