Juulsloth9958
Accurate metabolome measurements are critical for improved insights into breast cancer metabolic disturbances and enhanced exploration of novel therapeutic targets. Nevertheless, conventional functional interpretation is limited by metabolite identification capacity, which diminishes the scientific value of untargeted metabolomics analyses. In this study, we conducted a metabolomics-guided global pathway meta-analysis to investigate the metabolic alterations of breast cancer. Metabolic features were directly investigated in the pathway meta-analysis to identify breast cancer-associated metabolic processes. Conventional pathway analysis was also conducted involving identified metabolites alone. Comparison of the two strategies revealed that the global pathway meta-analysis approach could avoid the loss of functionally relevant information, relative to the conventional analysis findings. Furthermore, the pathway meta-analysis accurately captured alterations in the following components of the breast cancer metabolome central carbon metabolism, oxidative glutamine metabolism, purine metabolism, nonessential amino acid metabolism, and glutathione metabolism. There were also substantial alterations of fatty acyl carnitine species and fatty acid β-oxidation processes. These pathways contribute to breast cancer initiation, progression, metastasis, and drug resistance. In conclusion, we suggest that global pathway analysis and the conventional approach with identified metabolites should be employed together to maximize the exploration of breast cancer's metabolic landscape.A solvent-modified micellar electrokinetic chromatography method was developed following the Quality by Design approach for the simultaneous determination of sitagliptin (SIT), an oral antihyperglycemic drug, and its main impurities derived from the synthesis process. The separation system was identified in the scouting phase and was made by sodium dodecyl sulphate (SDS) micelles with the addition of n-butanol and methanol. The knowledge space was investigated through an asymmetric screening matrix, taking into consideration eight critical method parameters (CMPs) involving the composition of the background electrolyte in terms of buffer concentration and pH, the concentration of surfactants and organic modifiers, and voltage. The critical method attributes (CMAs) were identified as analysis time and the distance between the tail of the electroosmotic flow system peak and the front edge of impurity I1 (sitagliptin triazole hydrochloride). A Box-Behnken Design was used in response surface methodology for calculating the quadratic models relating the CMPs to the CMAs. From the models it was possible to compute the method operable design region (MODR) through Monte-Carlo simulations. The MODR was identified in the probability maps as the multidimensional zone where the risk of failure to achieve the desired values for the CMAs was lower than 10 %. The experimental conditions corresponding to the working point, with the MODR interval, were the following background electrolyte, 14 (10-18) mM borate buffer pH 9.20, 100 mM SDS, 13.6 (11.1-16.0) %v/v n-butanol, 6.7 (4.5-8.8) %v/v methanol; voltage and temperature were set to 28 kV and 22 °C, respectively. The developed CE method was validated in accordance with International Council for Harmonisation guidelines and was applied to the analysis of SIT tablets. The routine analysis for the quality control of the pharmaceutical product could be conducted in about 11 min.Qiwei Tongbi oral liquid (QWTB), a classical traditional Chinese medicine (TCM) formula, has a good therapeutic effect on rheumatoid arthritis (RA) and is widely used in China. To comprehensively elucidate the therapeutic mechanism of QWTB in the treatment of RA, the effects of QWTB on biomarkers and metabolic pathways in a rat model of kidney deficiency arthritis were investigated in this study. The effects of QWTB on pharmacodynamic indicators, including paw swelling, arthritis score; interleukin-1β, interleukin-6, interleukin-17 F, tumor necrosis factor-α, tartrate-resistant acid phosphatase 5b, bone alkaline phosphatase, bone-specific alkaline phosphatase, bone glaprotein, urea, and creatinine levels; and histopathology, suggested that QWTB significantly improved renal function, inhibited the inflammatory response, and reduced bone loss. In total, 39 differential metabolites were screened by comparing the endogenous components between blank and model rat plasma, among which 16 metabolites were altered by Sorafenib, lenvatinib, and apatinib, as multi-targeted tyrosine kinase inhibitors with anti-proliferative and anti-angiogenic effects, are widely used for systemic therapy in advanced hepatocellular carcinoma patients. Nevertheless, insufficient efficacy or adverse effects often appear due to the significant inter-individual variability of plasma concentration for these drugs. In order to carry out therapeutic drug monitoring of these drugs and then ensure the effectiveness and safety of the medical treatment, the first method allowing to quantify sorafenib, lenvatinib, and apatinib simultaneously in human plasma was developed in this study. The analysis was performed by UPLC-MS/MS system and the chromatographic separation was achieved on a C18 column using a gradient elution of water-acetonitrile in 3.5 min. Adavosertib Wee1 inhibitor This method presented satisfactory results in terms of specificity, precision (coefficient of variation of intra-day and inter-day1.4-6.6 %), accuracy (92.6-105.4 %), matrix effects (96.9-107.2 %), extraction recovery (90.5-99.4 %), as well as stability in human plasma and even whole blood under certain conditions. This sensitive, rapid and simple method was successfully applied to the analysis of sorafenib, lenvatinib and apatinib for therapeutic drug monitoring in hepatocellular carcinoma patients, and it was expected to be applied to further study about clarifying the concentration- efficacy and concentration-toxic relationship of sorafenib, lenvatinib, and apatinib in hepatocellular carcinoma patients.Meloxicam (MLX) is a non-steroidal anti-inflammatory drug, extensively used for inflammatory diseases and pain treatments, which exhibits five known solids forms. Form IV of MLX, a zwitterionic monohydrate (MH), is an emblematic hydrate case with promissory dissolution properties in a poorly soluble drug. However, the lack of information about MH stability regarding the dehydration process and phase transition impedes the development of further stability studies. A multi-spectroscopic/chemometric approach was implemented coupling middle- (MIR), near-infrared (NIR) and Raman spectroscopies to monitor the heat-mediated dehydration process of MH. The application of multivariate curve resolution-alternating least squares (MCR-ALS) to multi-source spectra by data fusion allow a complete view of the phenomena, improving the selectivity and precision to establish the transition temperatures and to identify involved species. It was revealed a two-step mechanism, where MH changes to Form V at 90 °C obtaining its complete dehydration at 130 °C, Form V remains unchanged during the temperature range 130-190 °C and then the polymorphic conversion to Form I starts, which reaches 100 % at 230 °C before melting MLX (248 °C).