Justiceengel0813

Z Iurium Wiki

This article presents a novel reconstructed model for the delayed load frequency control (LFC) schemes considering wind power, which aims to improve the computational efficiency for PID controllers while retaining their dynamic performance. Via fully exploiting system states influenced by time delays directly, this novel reconstructed method is proposed with a controller isolated. Hence, when the PID controllers are unknown, the stability criterion based on this model can resolve controller gains with less time consumed. For given PID gains, this model can be employed to establish criteria for stability analysis, which can realize the tradeoff between the calculation accuracy and efficiency. The case study is first based on a two-area traditional LFC system to validate the merits of a novel reconstructed model, including accurately estimating the influence of time delay on system frequency stability with increased computational capability. Then, under traditional and deregulated environments, case studies are carried out on the two-area and three-area schemes, respectively. Through the novel reconstructed model, the efficiency of obtaining controller parameters is highly improved while their robustness against the random wind power, tie-line power changes, inertial reductions, and time delays remains almost unchanged.In the past several years, it has become apparent that the effectiveness of Pareto-dominance-based multiobjective evolutionary algorithms deteriorates progressively as the number of objectives in the problem, given by M, grows. This is mainly due to the poor discriminability of Pareto optimality in many-objective spaces (typically M≥4). As a consequence, research efforts have been driven in the general direction of developing solution ranking methods that do not rely on Pareto dominance (e.g., decomposition-based techniques), which can provide sufficient selection pressure. However, it is still a nontrivial issue for many existing non-Pareto-dominance-based evolutionary algorithms to deal with unknown irregular Pareto front shapes. In this article, a new many-objective evolutionary algorithm based on the generalization of Pareto optimality (GPO) is proposed, which is simple, yet effective, in addressing many-objective optimization problems. The proposed algorithm used an ``(M-1)+1 framework of GPO dominance, (M-1)-GPD for short, to rank solutions in the environmental selection step, in order to promote convergence and diversity simultaneously. To be specific, we apply M symmetrical cases of (M-1)-GPD, where each enhances the selection pressure of M-1 objectives by expanding the dominance area of solutions, while remaining unchanged for the one objective left out of that process. Experiments demonstrate that the proposed algorithm is very competitive with the state-of-the-art methods to which it is compared, on a variety of scalable benchmark problems. Moreover, experiments on three real-world problems have verified that the proposed algorithm can outperform the others on each of these problems.In this article, we first propose a graph neural network encoding method for the multiobjective evolutionary algorithm (MOEA) to handle the community detection problem in complex attribute networks. In the graph neural network encoding method, each edge in an attribute network is associated with a continuous variable. Through nonlinear transformation, a continuous valued vector (i.e., a concatenation of the continuous variables associated with the edges) is transferred to a discrete valued community grouping solution. Further, two objective functions for the single-attribute and multiattribute network are proposed to evaluate the attribute homogeneity of the nodes in communities, respectively. Based on the new encoding method and the two objectives, a MOEA based upon NSGA-II, called continuous encoding MOEA, is developed for the transformed community detection problem with continuous decision variables. Experimental results on single-attribute and multiattribute networks with different types show that the developed algorithm performs significantly better than some well-known evolutionary- and nonevolutionary-based algorithms. The fitness landscape analysis verifies that the transformed community detection problems have smoother landscapes than those of the original problems, which justifies the effectiveness of the proposed graph neural network encoding method.In this article, we investigate the distributed adaptive consensus problem of parabolic partial differential equation (PDE) agents by output feedback on undirected communication networks, in which two cases of no leader and leader-follower with a leader are taken into account. learn more For the leaderless case, a novel distributed adaptive protocol, namely, the vertex-based protocol, is designed to achieve consensus by taking advantage of the relative output information of itself and its neighbors for any given undirected connected communication graph. For the case of leader-follower, a distributed continuous adaptive controller is put forward to converge the tracking error to a bounded domain by using the Lyapunov function, graph theory, and PDE theory. Furthermore, a corollary that the tracking error tends to zero by replacing the continuous controller with the discontinuous controller is given. Finally, the relevant simulation results are further demonstrated to demonstrate the theoretical results obtained.Evolutionary multitasking (EMT) is an emerging research direction in the field of evolutionary computation. EMT solves multiple optimization tasks simultaneously using evolutionary algorithms with the aim to improve the solution for each task via intertask knowledge transfer. The effectiveness of intertask knowledge transfer is the key to the success of EMT. The multifactorial evolutionary algorithm (MFEA) represents one of the most widely used implementation paradigms of EMT. However, it tends to suffer from noneffective or even negative knowledge transfer. To address this issue and improve the performance of MFEA, we incorporate a prior-knowledge-based multiobjectivization via decomposition (MVD) into MFEA to construct strongly related meme helper-tasks. In the proposed method, MVD creates a related multiobjective optimization problem for each component task based on the corresponding problem structure or decision variable grouping to enhance positive intertask knowledge transfer. MVD can reduce the number of local optima and increase population diversity.

Autoři článku: Justiceengel0813 (Childers Ottesen)