Justicecollier8548

Z Iurium Wiki

We review here the different redifferentiation strategies based on the underlying molecular mechanism leading to the sodium iodide symporter (NIS) and radioiodine uptake reinduction, i.e. by modulating signaling pathways, NIS transcription, NIS trafficking to the plasma membrane, NIS post-transcriptional regulation, by gene therapy and other potential strategies. We discuss clinical trials and promising preclinical data of potential future targets.In epididymis, cimetidine induces androgenic failure due to reduced sex hormone-binding globulin stromal levels and disturbs in androgen receptor (AR) nuclear import. check details UCHL1, a hydrolase of ubiquitin-proteasome system (UPS), seems to play a role in autophagy and apoptotic pathway. However, the role of UPS and autophagy in epididymis has not been clarified. We evaluated UCHL1 and autophagy in epididymal cauda epithelium under androgenic deficiency induced by cimetidine, focusing on the interplay among these processes and apoptosis. The integrity of epididymal muscular layer was also evaluated. Male rats received cimetidine (CMTG) or saline (CG). Seminal vesicles were weighed, the expression of androgen-responsive genes Crisp1 and connexin43 (Cx43) in cauda epididymis was evaluated, and cauda fragments were processed for light and transmission electron microscopy. The epithelium height and muscular thickness were measured. TUNEL, immunohistochemistry for caspase-3 and Cx43, and immunofluorescence for AR, Bcl-2, UCHL1, MAP LC3A and p62/SQSTM1 (autophagic markers) were performed. Bcl-2, UCHL1 and Cx43 were detected by western blot. In CMTG, the reduction in seminal vesicles weight accompanied by downregulation of Crisp1 and Cx43 confirmed epididymal androgenic failure. These results were associated with muscular atrophy, apoptosis and weak Cx43 and AR immunoexpression, supporting the androgenic dependence of muscular integrity. The high UCHL1 levels and reduction in Bcl-2 reinforce UCHL1 role in epithelial cells death. The intense immunoexpression of LC3A and p62/SQSTM1 indicates autophagic disturb, which in association with high UCHL1 levels, points to a role of UPS and autophagy in the regulation of epididymal epithelial cells viability under androgenic control.We previously demonstrated that 5'-adenosine monophosphate-activated protein kinase (AMPK) is essential for normal reproductive functions in female mice. Conditional ablation of Prkaa1 and Prkaa2, genes that encode the α1 and α2 catalytic domains of AMPK, resulted in early reproductive senescence, faulty artificial decidualization, uterine inflammation and fibrotic postparturient endometrial regeneration. We also noted a delay in the timing of embryo implantation in Prkaa1/2d/d female mice, suggesting a role for AMPK in establishing uterine receptivity. As outlined in new studies here, conditional uterine ablation of Prkaa1/2 led to an increase in ESR1 in the uteri of Prkaa1/2d/d mice resulting in prolonged epithelial cell proliferation and retention of E2-induced gene expression (e.g., Msx1, Muc1, Ltf) through the implantation window. Within the stromal compartment, stromal cell proliferation was reduced by five-fold in Prkaa1/2d/d mice, and this was accompanied by a significant decrease in cell cycle regulatory genes and aberrant expression of decidualization marker genes such as Hand2, Bmp2, Fst, Inhbb. This phenotype is consistent with our prior study demonstrating a failure of the Prkaa1/2d/d uterus to undergo decidualization. Despite these uterine defects, ovarian function seemed to be normal following ablation of Prkaa1/2 from peri-ovulatory follicles in that ovulation, luteinization and serum progesterone levels were not different on day 5 of pregnancy or pseudopregnancy between Prkaa1/2fl/fl and Prkaa1/2d/d mice. These cumulative findings demonstrate that AMPK activity plays a prominent role in mediating several steroid hormone-dependent events such as epithelial cell proliferation, uterine receptivity and decidualization as pregnancy is established.In the last years many studies focused on the understanding of the possible role of zinc in the control of mammalian oogenesis, mainly on oocyte maturation and fertilization. However, little is known about the role of zinc at earlier stages, when the growing oocyte is actively transcribing molecules that will regulate and sustain subsequent stages of oocyte and embryonic development. In this study we used the bovine model to gain insights into the possible involvement of zinc in oocyte development. We first mined the EmbryoGENE transcriptomic dataset, which revealed that several zinc transporters and methallothionein are impacted by physiological conditions throughout the final phase of oocyte growth and differentiation. We then observed that zinc supplementation during in vitro culture of growing oocytes is beneficial to the acquisition of meiotic competence when subsequently subjected to standard in vitro maturation. Furthermore, we tested the hypothesis that zinc supplementation might support transcription in growing oocytes. This hypothesis was indirectly confirmed by the experimental evidence that the content of labile zinc in the oocyte decreases when a major drop in transcription occurs in vivo. Accordingly, we observed that zinc sequestration with a zinc chelator rapidly reduced global transcription in growing oocytes, which was reversed by zinc supplementation in the culture medium. Finally, zinc supplementation impacted the chromatin state by reducing the level of global DNA methylation, which is consistent with the increased transcription. In conclusion our study suggests that altering zinc availability by culture medium supplementation supports global transcription, ultimately enhancing meiotic competence.The placenta performs a range of crucial functions that support fetal growth during pregnancy, including facilitating the supply of nutrients and gases to the fetus, removal of waste products from the fetus, and the endocrine modulation of maternal physiology. The placenta also stores glucose in the form of glycogen, the function of which remains unknown. Aberrant placental glycogen storage in humans is associated with maternal diabetes during pregnancy and pre-eclampsia, thus linking placental glycogen storage and metabolism to pathological pregnancies. To understand the role of placental glycogen in normal and complicated pregnancies, we must turn to animal models. Over 40 targeted mutations in mice demonstrate defects in placental cells that store glycogen and suggest that placental glycogen represents a source of readily mobilised glucose required during periods of high fetal demand. However, direct functional evidence is currently lacking. Here, we evaluate these genetic mouse models with placental phenotypes that implicate glycogen trophoblast cell differentiation and function to illuminate the common molecular pathways that emerge and to better understand the relationship between placental glycogen and fetal growth.

Autoři článku: Justicecollier8548 (Stephenson Oneill)