Justesenperkins2009

Z Iurium Wiki

Polymeric metal-organic nanocapsule networks (polyMONCs), where metal-organic nanocapsules (MONCs) are connected by functional polymers, could possess the properties of traditional polymers and also retain the structures of MONCs. In this work, we constructed novel polyMONCs based on Mg-seamed pyrogallol[4]arene-containing MONCs through supramolecular coordination-driven self-assembly. The MONCs can be successfully polymerized using poly(ethylene glycol) as the linker, and the prepared polyMONCs can be further made into gels with self-healing properties and stimuli responsiveness. Advantageously, single crystals of MONCs cross-linked by ethylene glycol/diethylene glycol were obtained, giving us direct perspectives to mimic and investigate the self-assembly process of polyMONCs.With increasing utilization of silver nanomaterials, growing concerns are raised on their deleterious effects to the environment. Once discharged in an aquatic environment, the interactions between silver nanowires (AgNWs) and proteins may significantly affect the environmental behaviors, fate, and toxicities of AgNWs. In the present study, three representative model proteins, including ovalbumin (OVA), bovine serum albumin (BSA), and lysozyme (LYZ), were applied to investigate the impacts of the interactions between proteins and AgNWs on the transformations (oxidative dissolution and sulfidation) of AgNWs in an aquatic environment. Fluorescence spectroscopy and isothermal titration calorimetry analyses indicated that there was very weak interaction between OVA or BSA and AgNWs, but there was a strong interaction between the positively charged LYZ and the negatively charged AgNWs. The presence of LYZ not only reversed the surface charge of AgNWs but also resulted in the breakup of the nanowire structure and increased the reactive surface area. The positively charged surface of AgNWs in the presence of LYZ favored the access of sulfide ions. As a consequence, the kinetics of oxidative dissolution and sulfidation of AgNWs were not affected by OVA and BSA but were significantly facilitated by LYZ. The results shed light on the important roles of electrostatic interactions between AgNWs and proteins, which may have important implications for evaluating the fate and effects of silver nanomaterials in complicated environments.Naphthalene (NAP), as a surrogate of intermediate-volatility organic compounds (IVOCs), has been proposed to be an important precursor of secondary organic aerosol (SOA). However, the relative contribution of its emission sources is still not explicit. This study firstly conducted the source apportionment of atmospheric NAP using a triple-isotope (δ13C, δ2H, and Δ14C) technique combined with a Bayesian model in the Beijing-Tianjin-Hebei (BTH) region of China. At the urban sites, stable carbon (-27.7 ± 0.7‰, δ13C) and radiocarbon (-944.0 ± 20.4‰, Δ14C) isotope compositions of NAP did not exhibit significant seasonal variation, but the deuterium system showed a relatively more 2H depleted signature in winter (-86.7 ± 8.9‰, δ2H) in comparison to that in summer (-56.4 ± 3.9‰, δ2H). Radiocarbon signatures indicated that 95.1 ± 1.8% of NAP was emitted from fossil sources in these cities. The Bayesian model results indicated that the emission source compositions in the BTH urban sites had a similar pattern. The contribution of liquid fossil combustion was highest (46.7 ± 2.6%), followed by coal high-temperature combustion (26.8 ± 7.1%), coal low-temperature combustion (18.9 ± 6.4%), and biomass burning (7.6 ± 3.1%). At the suburban site, the contribution of coal low-temperature combustion could reach 70.1 ± 6.4%. The triple-isotope based approach provides a top-down constraint on the sources of atmospheric NAP and could be further applied to other IVOCs in the ambient atmosphere.The Ah receptor (AHR) has been studied for almost five decades. Yet, we still have many important questions about its role in normal physiology and development. Moreover, we still do not fully understand how this protein mediates the adverse effects of a variety of environmental pollutants, such as the polycyclic aromatic hydrocarbons (PAHs), the chlorinated dibenzo-p-dioxins ("dioxins"), and many polyhalogenated biphenyls. To provide a platform for future research, we provide the historical underpinnings of our current state of knowledge about AHR signal transduction, identify a few areas of needed research, and then develop concepts such as adaptive metabolism, ligand structural diversity, and the importance of proligands in receptor activation. We finish with a discussion of the cognate physiological role of the AHR, our perspective on why this receptor is so highly conserved, and how we might think about its cognate ligands in the future.In the present study, triplicate rings of 360° pipe surfaces of an operational drinking water distribution pipe were swabbed. Each ring was equally divided into 16 parts for swabbing. The collected swabs were grouped into 3 sections and compared with the biofilm samples sampled by sonication of specimens from the same pipe. The results showed that the biofilm is unevenly distributed over the 16 parts and the 3 sections of the pipe surface. Both the active biomass and the number of observed OTUs increased as the measurements proceeded from the top to the bottom of the pipe. The bacterial community was dominated in all sections by Proteobacteria. At the genus level, Nitrospira spp., Terrimonas spp., and Hyphomicrobium spp. were dominant in all sections. Gaiella spp. and Vicinamibacter spp. dominated in S-I, Blastopirellula spp. and Pirellula spp. dominated in S-II, while Holophaga spp. selleckchem and Phaeodactylibacter spp. dominated in S-III. When swabbing and pipe specimen sonication were compared, the results showed that the sampling strategy significantly influences the obtained biofilm bacterial community. A consistent multisectional swabbing strategy is proposed for future biofilm sampling; it involves collecting swabs from all sections and comparing the swabs from the same position/section across locations.Functional hydrogels that can be obtained through facile fabrication procedures and subsequently modified using straightforward reagent-free methods are indispensable materials for biomedical applications such as sensing and diagnostics. Herein a novel hydrogel platform is obtained using polymeric precursors containing the maleimide functional group as a side chain. The maleimide groups play a dual role in fabrication of functional hydrogels. They enable photochemical cross-linking of the polymers to yield bulk and patterned hydrogels. Moreover, the maleimide group can be used as a handle for efficient functionalization using the thiol-maleimide conjugation and Diels-Alder cycloaddition click reactions. Obtained hydrogels are characterized in terms of their morphology, water uptake capacity, and functionalization. Micropatterned hydrogels are obtained under UV-irradiation using a photomask to obtain reactive micropatterns, which undergo facile functionalization upon treatment with thiol-containing functional molecules such as fluorescent dyes and bioactive ligands.

Autoři článku: Justesenperkins2009 (Kejser Mccall)