Junkerhessellund3118
Finally, taking Zhengzhou City, China as the study area, the loss curves of 10 property types were calculated. Compared with the original data, the average variation coefficient of the optimal scheme set was reduced by 0.1; the probability of the optimal value was increased by 1.39% compared with the average value. In addition, the method test was conducted in Jinan, China, where the data were available, and it was found that the three types of errors were significantly lower than the traditional comparison method of single city as reference object. This study is expected to provide a scientific reference for the establishment of flood damage curve in cities or areas lacking disaster data.Transport of suspended particulate matter (SPM) in estuarine waters plays an important role in regulating erosion-accretion and biogeochemical processes. In the Yellow River Estuary (YRE), artificial water and sediment regulation scheme (WSRS) and coastal engineering structures are the 2 typical anthropogenic activities affecting the spatiotemporal dynamics of estuarine SPM. The monitoring of SPM transport affected by such human activities requires SPM mapping at both high spatial and high temporal resolutions. In this study, we presented an improved Flexible Spatiotemporal Data Fusion (FSDAF) strategy with consideration of highly dynamic SPM variations in estuarine waters, and generated 30-m hourly SPM concentrations based on Landsat 8 OLI and GOCI datasets. The new strategy produced higher SPM estimation accuracy than the original FSDAF, with the relative percentage difference (RPD) decreasing from 29.75% to 5.31% using GOCI-derived hourly SPM as reference. With in situ SPM measurements as reference, the fused SPM concentrations had an RMSE of 12.09 mg/L and an RPD of 27.17%. Investigation of interday SPM variations before, during, and after the WSRS in 2018 revealed that the first WSRS significantly increased the SPM concentration and plume extent; new wetland with an area of 12.56 km2 was formed due to sediment accretion near the river mouth. The two groins offshore from the coastlines on the north and south sides of YRE exhibited obvious sediment trapping effects in that higher SPM concentrations on one side of each groin were found regardless of the turbidity modes and diurnal SPM variations; the trapping effects were associated with the number of groins and groin length. Intraday variations of SPM were influenced by tidal currents, with plume direction following the ebb and flooding tidal current direction. The inter- and intraday characteristics of the 30-m hourly SPM dynamics facilitate the detailed analysis of the sediment transport associated with human activities.While the impacts of arsenic (As) and Magnaporthe oryzae on rice have been well-studied, a dearth of knowledge exists on how rice responds to their combined stress. Moreover, increasing exogenous silicon (Si) can alleviate M. oryzae infection and As uptake, but how increasing exogenous Si affects the combined stress of M. oryzae and As is unknown. We grew three cultivars of rice that varied in their susceptibility to As and M. oryzae under low (50 μM, SiL) and high (1500 μM, SiH) Si with and without As (4 μM, 80/20 As (III)/As(V)) and with or without M. oryzae infection and examined the impacts of treatments on plant As and Si concentrations, severity of disease by M. oryzae, and stress via targeted gene expression. SiH treatments generally decreased shoot As concentrations by 20-70% compared to SiL treatments depending on cultivar and M. oryzae exposure. There was no effect of Si or As treatments on percent of leaf diseased in the As-tolerant cultivar M206, but in the As-sensitive cultivar IR66, SiH treatment decreased percent of leaf diseased in the absence of As and had no impact when As was present. In the M. Belnacasan oryzae-susceptible Sariceltik, plants receiving SiH had significantly fewer lesions than those receiving SiL and plants with the fewest lesions were in the SiH + As treatments. Plants that were exposed to As + M. oryzae were the most stressed when grown under SiL, but this stress response was lowered by SiH treatments. A separate pathogenicity assay with Sariceltik showed that in contrast to our hypothesis, As exposure decreased lesion growth, particularly under SiH treatments, and lessened the impact of M. oryzae on rice. These results suggest that rice grown under replete Si will be able to withstand combined stressors of M. oryzae and As, but will be highly stressed under Si deficient scenarios.Development along Florida's coastal waterways has led to significant degradation in water quality over time. Numerous sources have contributed to increased nutrient loads in surface waters. Nitrogen (N) and phosphorus (P) pollution from urban fertilizer use has been addressed at the state, county, and municipality level yet the success of these efforts is rarely evaluated. This study aimed to validate these efforts by assessing the source and concentration of nutrients from surface water associated with waterfront homes with or without Florida Friendly Landscaping™, a nonstructural best management practice. The objectives were to compare nutrient concentrations in runoff from differing landscape designs; compare the NO3- isotopic signature to that of known N sources; and evaluate the impact of a fertilizer ordinance blackout that is in effect during the wet season. Results from the study indicate no statistical reduction in the nutrient concentration of lawn runoff from either landscape design or the implementation of a fertilizer blackout ordinance. Results show that the sources of N in home landscapes are highly variable and cannot be solely attributed to fertilizer sources and highlight the influence of atmospheric depositions and soil nutrient pools which contribute 53-65% of the nitrate in lawn runoff. Nutrient management strategies need to address multiple sources of urban nutrients and mitigation efforts will not be immediate.The emergence of antibiotic-resistant clinically relevant facultative pathogenic bacteria in the environment has become one of the most important global health challenges. Antibiotic-resistant bacteria (ARB) have been found in surface waters and wastewater treatment plants. Drinking water guidelines and the EU bathing water directive 2006/7/EC include the surveillance of defined microbiological parameters on species level, while the monitoring of ARB is missing in all existing guidelines. However, standardized methods for the detection of ARB exist for clinical investigations of human materials only. They are based on cultivation on selective agar plates. These methods cannot be used directly for environmental samples, because of the high amount and diversity of bacterial background flora which interferes with the detection of human-relevant ARB. The aim of this study was to introduce a proposal for future normative standard operation procedures, with international relevance, for the culture-based detection of clinically-relevant antibiotic resistant bacteria in aquatic environmental samples like wastewater and surface water gram-negative bacteria resistant against 3rd generation cephalosporins (ESBL) and against carbapenems (CARBA), gram-positive vancomycin-resistant enterococci (VRE) and methicillin-resistant Staphylococcus aureus (MRSA).