Jordansexton8318
The rubbing colorfastness values for the fabrics dyed with the black disperse dye spanned four grades under dry and wet conditions. The light colorfastness values of the dyed fabrics were good to excellent in the range of 4-5 grades.This paper introduces an object model and an interaction method for a simulated experience of pottery on a potter's wheel. Firstly, we propose a layered cylinder model for a 3D object of the pottery on a potter's wheel. Secondly, we set three kinds of deformation functions to form the object model from an initial state to a bowl shape shaping the external surface, forming the inner shape (deepening the opening and widening the opening), and reducing the total height. Next, as for the interaction method between a user and the model, we prepare a simple but similar method for hand-finger operations on pottery on a potter's wheel, in which the index finger movement takes care of the external surface and the total height, and the thumb movement makes the inner shape. Those are implemented in the three-dimensional aerial image interface (3DAII) developed in our laboratory to build a simulated experience system. We confirm the operation of the proposed object model (layered cylinder model) and the functions of the prepared interaction method (a simple but similar method to actual hand-finger operations) through a preliminary evaluation of participants. The participants were asked to make three kinds of bowl shapes (cylindrical, dome-shaped, and flat-type) and then they answered the survey (maneuverability, visibility, and satisfaction). All participants could make something like three kinds of bowl shapes in less than 30 min from their first touch.Here we propose a new machine learning algorithm for classification of human activities by means of accelerometer and gyroscope signals. Based on a novel hierarchical system of logistic regression classifiers and a relatively small set of features extracted from the filtered signals, the proposed algorithm outperformed previous work on the DaLiAc (Daily Life Activity) and mHealth datasets. find more The algorithm also represents a significant improvement in terms of computational costs and requires no feature selection and hyper-parameter tuning. The algorithm still showed a robust performance with only two (ankle and wrist) out of the four devices (chest, wrist, hip and ankle) placed on the body (96.8% vs. 97.3% mean accuracy for the DaLiAc dataset). The present work shows that low-complexity models can compete with heavy, inefficient models in classification of advanced activities when designed with a careful upstream inspection of the data.A total of 27 experimental diets were formulated starting from the same basal mixture, with a moderate content of crude protein and digestible energy (155 g and 9.86 MJ/kg of digestible matter (DM), respectively, both estimated). The contents of lysine, sulphur amino acids and threonine were variable. The first one, close to the current recommendations (Medium, M; 8.1, 5.8 and 6.9 g/kg DM for lysine, sulphur amino acids and threonine, respectively), and two other levels were on average 15% higher (High, H; 9.4, 6.6 and 7.8 g/kg DM for lysine, sulphur amino acids and threonine, respectively) or lower (Low, L; 6.7, 4.9 and 5.7 g/kg DM for lysine, sulphur amino acids and threonine, respectively). Diets were named with three letters, indicating lysine, sulphur amino acids and threonine levels, respectively. In total, 918 weaned rabbits (28 days old) were used (34 per diet). At weaning, animals were fed ad libitum with a commercial diet until day 46, day 47 each collective cage was randomly switched to one experimental diet. At day 48, blood samples were collected at 0800h then the animals were subjected to 10 h of fasting and a second blood sample was extracted at 21.00h. At 0800h, Pasmatic urea nitrogen (PUN) was higher with the L level of lysine (p less then 0.001), unaffected by the level of sulphur amino acids and increased with the level of threonine (p less then 0.001). At 2100h, minimum PUN was observed with the MHL diet (14.72 ± 0.661 mg/dL). Taken into account the usual recommendations (established for a diet containing 11.3 MJ DE/kg DM, and then being 0.72, 0.51 and 0.61 g/MJ DE for lysine, sulphur amino acids and threonine, respectively), these results suggest that a diet containing more lysine and sulphur amino acids per energy unit (around 0.82 and 0.67 g/MJ DE) could better fit the growing rabbit requirements, although studies on the effects of such a diet on performance and protein retention are necessary.Colorectal cancer (CRC) is the third most common cancer worldwide and the leading cause of cancer-related deaths. Recently, several studies have demonstrated that gut microbiota can alter CRC susceptibility and progression by modulating mechanisms such as inflammation and DNA damage, and by producing metabolites involved in tumor progression or suppression. link2 Dysbiosis of gut microbiota has been observed in patients with CRC, with a decrease in commensal bacterial species (butyrate-producing bacteria) and an enrichment of detrimental bacterial populations (pro-inflammatory opportunistic pathogens). CRC is characterized by altered production of bacterial metabolites directly involved in cancer metabolism including short-chain fatty acids and polyamines. Emerging evidence suggests that diet has an important impact on the risk of CRC development. The intake of high-fiber diets and the supplementation of diet with polyunsaturated fatty acids, polyphenols and probiotics, which are known to regulate gut microbiota, could be not only a potential mechanism for the reduction of CRC risk in a primary prevention setting, but may also be important to enhance the response to cancer therapy when used as adjuvant to conventional treatment for CRC. Therefore, a personalized modulation of the pattern of gut microbiome by diet may be a promising approach to prevent the development and progression of CRC and to improve the efficacy of antitumoral therapy.Chitin is a structural polysaccharide of the cell walls of fungi and exoskeletons of insects and crustaceans. In this study, chitin was extracted, for the first time in our knowledge, from the Cicada orni sloughs of the south-eastern French Mediterranean basin by treatment with 1 M HCl for demineralization, 1 M NaOH for deproteinization, and 1% NaClO for decolorization. The different steps of extraction were investigated by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA), and Scanning Electron Microscopy (SEM). Results demonstrated that the extraction process was efficiently performed and that Cicada orni sloughs of the south-eastern French Mediterranean basin have a high content of chitin (42.8%) in the α-form with a high degree of acetylation of 96% ± 3.4%. These results make Cicada orni of the south-eastern French Mediterranean basin a new and promising source of chitin. Furthermore, we showed that each step of the extraction present specific characteristics (for example FTIR and XRD spectra and, consequently, distinct absorbance peaks and values of crystallinity as well as defined values of maximum degradation temperatures identifiable by TGA analysis) that could be used to verify the effectiveness of the treatments, and could be favorably compared with other natural chitin sources.Survival rates for Ewing sarcoma (ES) patients with metastatic disease have not improved in over 20 years. Tumor growth and metastasis are dependent on tumor vasculature expansion; therefore, identifying the regulators that control this process in ES may provide new therapeutic opportunities. ES expresses high levels of repressor element 1 silencing transcription factor (REST), which is regulated by the EWS-FLI-1 fusion gene. link3 However, the role of REST in ES growth and the regulation of the tumor vasculature have not been elucidated. To study this role, we established REST-knockout human TC71 ES cell lines through CRISPR/Cas9 recombination. While knockout of REST did not alter tumor cell proliferation in vitro, REST knockout reduced tumor growth and metastasis to the lung in vivo and altered tumor vascular morphology and function. Tumor vessels in the REST-knockout tumors had a punctate appearance with significantly decreased tumor vascular pericytes, decreased perfusion, and increased permeability. REST-knockout tumors also showed increased apoptosis and hypoxia. These results indicate that REST plays a critical role in ES vascular function, which in turn impacts the ability of ES tumors to grow and metastasize. These findings therefore provide a basis for the targeting of REST as a novel therapeutic approach in ES.Size distribution, Young's moduli and electrical resistivity are investigated for CuO nanowires synthesized by different thermal oxidation methods. Oxidation in dry and wet air were applied for synthesis both with and without an external electrical field. An increased yield of high aspect ratio nanowires with diameters below 100 nm is achieved by combining applied electric field and growth conditions with additional water vapour at the first stage of synthesis. Young's moduli determined from resonance and bending experiments show similar diameter dependencies and increase above 200 GPa for nanowires with diameters narrower than 50 nm. The nanowires synthesized by simple thermal oxidation possess electrical resistivities about one order of magnitude lower than the nanowires synthesized by electric field assisted approach in wet air. The high aspect ratio, mechanical strength and robust electrical properties suggest CuO nanowires as promising candidates for NEMS actuators.The design of a photocatalytic process must consider intrinsic and extrinsic parameters affecting its overall efficiency. This study aims to outline the importance of balancing several factors, such as radiation source, total irradiance, photon flux, catalyst substrate, and pollutant type in order to optimize the photocatalytic efficiency. Titanium oxide was deposed by the doctor blade technique on three substrates (microscopic glass (G), flour-doped tin oxide (FTO), and aluminum (Al)), and the photocatalytic properties of the samples were tested on two pollutants (tartrazine (Tr) and acetamiprid (Apd)). Seven irradiation scenarios were tested using different ratios of UV-A, UV-B + C, and Vis radiations. The results indicated that the presence of a conductive substrate and a suitable ratio of UV-A and Vis radiations could increase the photocatalytic efficiency of the samples. Higher efficiencies were obtained for the sample Ti_FTO (58.3% for Tr and 70.8% for Apd) and the sample Ti_Al (63.8% for Tr and 82.3% for Apd) using a mixture of three UV-A and one Vis sources (13.5 W/m2 and 41.85 μmol/(m2·s)). A kinetic evaluation revealed two different mechanisms of reaction (a) a one-interval mechanism related to Apd removal by Ti_FTO, Ti_Al (scenarios 1, 4, 5, and 7), and Ti_G samples (scenario 7) and (b) a two-interval mechanism in all other cases.The 5-(4-substituted-arylidene)-1,3-dimethylpyrimidine-2,4,6-triones were tested as visible light sensitizers for phenyltrialkylborate salts applied to initiate polymerization processes. The initiation occurs as a result of photoinduced electron transfer from the borate salt to the merocyanine dye. The main factor that facilitates the step of the reaction is the free energy change for electron transfer. Its value is favorable according to the reduction properties of the dyes influenced by the type of amino groups and the oxidation potentials of the borate salts. The observed bleaching of the dyes during photopolymerization affects the yield of both the alkyl radical and sensitizer-based radical formation and thus the efficiency of the photopolymerization.