Jonesneal3047
Electric-field-mediated magnetic properties were investigated in CoFe2O4/La0.67Sr0.33MnO3/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (CFO/LSMO/PMN-PT) heterostructures. The butterfly-like behavior of the magnetization under different electric fields indicates that the strain effect plays a critical role in the electric-field-mediated magnetic properties, leading to an increase in magnetization along the [100] direction but a decrease along the [01-1] direction in the CFO/LSMO/PMN-PT heterostructures. More interestingly, due to the large magnetostriction of the CFO layer, the coercivity of the CFO/LSMO/PMN-PT heterostructures decreases ∼50% along the [01-1] direction under the electric fields. The large modulation of the coercivity makes it possible to achieve electric-field-controlled magnetoresistance in the metal/CFO/LSMO/PMN-PT spin filter magnetic tunneling junctions.DNAzymes are DNA molecules capable of catalytic activity. The catalytic core of DNAzymes can be separated and conjugated with target binding arms to create allosteric DNAzymes known as multi-component nucleic acid enzymes (MNAzymes). Two widely used DNAzymes are the 10-23 and the 8-17 DNAzymes. These DNAzymes differ in catalytic core structures, cleavage sites, and reactive metal ion cofactors. Previously we showed that the presence of a cationic comb-type polymer poly(l-lysine)-graft-dextran (PLL-g-Dex) improved activities of the 10-23 DNAzyme and MNAzyme by facilitating assembly of the catalytic complex. In this work, we demonstrate that PLL-g-Dex enhances activities of the 8-17 DNAzyme and MNAzyme; poly(allylamine)-graft-dextran and cationic homopolymers did not enhance activities. Metal ion and pH dependences were observed in the presence of PLL-g-Dex, suggesting that the cationic copolymer did not impede the interaction between the metal ion and the DNA-based enzymes. Thus, PLL-g-Dex has chaperone-like activity for DNAzymes and MNAzymes regardless of structures, cleavage sites, and cofactors.Correction for 'The optimization of cancer photodynamic therapy by utilization of a pi-extended porphyrin-type photosensitizer in combination with MITO-Porter' by Satrialdi et al., Chem. Commun., 2020, 56, 1145-1148, DOI 10.1039/C9CC08563G.Cryptochromes are a class of flavoproteins proposed as candidates to explain magnetoreception of animals, plants and bacteria. The main hypothesis is that a biradical is formed upon blue-light absorption by flavin adenine dinucleotide (FAD). In a protein milieu, the oxidized form of FAD can be reduced, leading to four redox derivative forms anionic and neutral semi-reduced radicals, and anionic and neutral fully reduced forms. All these forms have a characteristic electronic absorption spectrum, with a strong vibrational resolution. Here, we carried out a normal mode analysis at the electrostatic embedding QM/MM level of theory to compute the vibrationally resolved absorption spectra of the five redox forms of FAD embedded in a plant cryptochrome. We show that explicitly accounting for vibrational broadening contributions to electronic transitions is essential to reproduce the experimental spectra. In the case of the neutral radical form of FAD, the absorption spectrum is reproduced only if the presence of a tryptophan radical is considered.Quercetin, one of the most abundant flavonoids in plant-based foods, commonly occurs in nature in various glycosylated forms. There is still a less explored aspect regarding the cause of diversity of its glycosides, depending on the sugar moiety attached. This work focuses on four wide-spread quercetin glycosides-hyperoside, isoquercitrin, quercitrin and rutin-by testing the property-tuning capacity of different sugar moieties and thus explains and predicts some of their functions in plant-based foods. The electron paramagnetic spectra of the semiquinone anion radicals of these glycosides were interpreted in terms of hyperfine coupling constants and linewidths, highlighting a clear link between spin density trends, the identity of the bound sugar, and their reactivity corroborated with their modelled structures. Redox potential and lipophilicity were connected to a specific flavonoid-enzyme interaction and correlated with their prooxidant reactivity assessed by oxidation of ferrous hemoglobin. Hyperoside and isoquercitin-galactose and glucose glycosides-exhibit the highest prooxidant reactivity owing to their lowest redox potential and lipophilicity whereas rutin and quercitrin-rutinose and rhamnose glycosides-behave vice versa. The ability of the tested glycosides to undergo HAT or SET-type reactions has also been tested using five different analytical assays, including inhibition of cytochrome c-triggered liposome peroxidation. In most cases, rutin proved to be the most unreactive of the four tested glycosides considering either steric or redox reasons whereas the reactivity hierarchy of the other three glycosides were rather assay dependent.In this study, the influences of liquid medium-chain triglyceride (MCT) and solid glyceryl tristearate (GTS) contents in the lipid matrix of nanostructured lipid carriers (NLCs) on their delivering capacities with respect to curcumin (Cur) were investigated by using a simulated gastrointestinal tract and Caco-2 monolayer models. The transformation of the encapsulated Cur decreased on increasing the MCT content in the lipid matrix of NLCs because it facilitated their lipolysis and promoted the exposure of Cur to a harsher exterior environment. Cur bioaccessibility was positively correlated with the level of micellized stearic acid resulting from GTS hydrolysis, which might be attributed to the fact that it could afford large hydrophobic domains to accommodate Cur. This value initially increased with an increase in the MCT content, reaching a maximum at 20% (w/w) and decreasing thereafter. The intestinal absorption of micellar Cur ranged from 26.06% to 38.76%, and a majority of the transported molecules were its reductive and conjugative metabolites. HOpic mw Overall, NLC containing 20% MCT in the lipid matrix afforded the highest Cur bioavailability, followed by that containing 10, 0, 40, 60, and 100% MCT. This work provides useful insights into the rational design of NLCs to optimize the bioavailability of the loaded agent.