Jokumsenhayden6688

Z Iurium Wiki

Cultured cardiomyocytes allow for easy manipulation of cell behavior (e.g., cell division) and its analysis (e.g., live-cell imaging). In addition, isolated cells in culture are a valuable tool for pharmacological and toxicological studies. This chapter offers a practical guide to isolate and culture primary neonatal and adult rat cardiomyocytes and a detailed protocol for live-cell imaging of embryonic and neonatal cardiomyocytes.Small animal models are indispensable for cardiac regeneration research. Studies in mouse and rat models have provided important insights into the etiology and mechanisms of cardiovascular diseases and accelerated the development of therapeutic strategies. It is vitally important to be able to evaluate the therapeutic efficacy and have reliable surrogate markers for therapeutic development for cardiac regeneration research. Magnetic resonance imaging (MRI), a versatile and noninvasive imaging modality with excellent penetration depth, tissue coverage, and soft-tissue contrast, is becoming a more important tool in both clinical settings and research arenas. Cardiac MRI (CMR) is versatile, noninvasive, and capable of measuring many different aspects of cardiac functions, and, thus, is ideally suited to evaluate therapeutic efficacy for cardiac regeneration. CMR applications include assessment of cardiac anatomy, regional wall motion, myocardial perfusion, myocardial viability, cardiac function assessment, assessment of myocardial infarction, and myocardial injury. Myocardial infarction models in mice are commonly used model systems for cardiac regeneration research. In this chapter, we discuss various CMR applications to evaluate cardiac functions and inflammation after myocardial infarction.Adult zebrafish possess an elevated cardiac regenerative capacity as compared with adult mammals. In the past two decades, zebrafish have provided a key model system for studying the cellular and molecular mechanisms of innate heart regeneration. The ease of genetic manipulation in zebrafish has enabled the establishment of a genetic ablation injury model in which over 60% of cardiomyocytes can be depleted, eliciting signs of heart failure. After this severe injury, adult zebrafish efficiently regenerate lost cardiomyocytes and reverse heart failure. In this chapter, we describe the methods for inducing genetic cardiomyocyte ablation in adult zebrafish, assessing cardiomyocyte proliferation, and histologically analyzing regeneration after injury.The zebrafish (Danio rerio) possesses a spectacular capacity for cardiac regeneration. Zebrafish have been used in cardiac regeneration research for nearly two decades, contributing to the identification of signals and cellular mechanisms as potential targets for human heart repair. Investigations into cardiac regeneration in zebrafish have been facilitated by multiple methods of inducing cardiac tissue damage. Romidepsin clinical trial Among the established methods, cardiac resection injury is a relatively simple, yet robust approach traditionally used to induce cardiac tissue damage in a reproducible manner. Here, we describe a detailed protocol to perform a cardiac resection injury in adult zebrafish and discuss potential complications for researchers who are new to this technique.Zebrafish have the capacity to regenerate most of its organs upon injury, including the heart. Due to its amenability for genetic manipulation, the zebrafish is an excellent model organism to study the cellular and molecular mechanisms promoting heart regeneration. Several cardiac injury models have been developed in zebrafish, including ventricular resection, genetic ablation, and ventricular cryoinjury. This chapter provides a detailed protocol of zebrafish ventricular cryoinjury and highlights factors and critical steps to be considered when performing this method.Myocardial infarction is a major clinical challenge for interventional, pharmacological, and potential molecular treatment of the ischemic insult. A large animal model with clinic-derived instrumentation allows for detailed imitation of interventional catheterization routines and application routes, whereas similar anatomy and heart proportions raise the possibility to precisely evaluate the efficacy of application modes, e.g., antegrade or retrograde intracoronary application of locally acting pharmaceutical agents, viruses, and cells. Here, we describe the techniques of left ventricular catheterization and induction of ischemia and reperfusion, as well as hemodynamic monitoring and regional application of therapeutic agents in pigs.Left ventricular catheterization in mice allows for in-depth assessment of myocardial function in healthy and diseased animals with the advent of pressure volume loop recordings greatly enhancing the technique. While a powerful tool, proper execution of the procedure is paramount to ensure reproducibility and reliability of the results obtained. Here, we describe the technique of left ventricular catheterization using the Scisense conductance catheter system by Transonic; however, the basic method applies to all murine catheter systems. We furthermore indicate possible pitfalls during the procedure and how to avoid them.Neonatal mouse hearts have a regenerative capacity similar to adult zebrafish. Different cardiac injury models have been established to investigate the regenerative capacity of neonatal mouse hearts, including ventricular amputation, cryoinjury, and ligation of a major coronary artery. While the ventricular resection model can be utilized to study how tissue forms and regenerates de novo, cryoinjury and coronary artery ligation are methods that might better mimic myocardial infarction by creating tissue damage and necrosis as opposed to the removal of healthy tissue in the ventricular amputation model. Here we describe methods of creating ventricular resection and cardiac cryoinjury in newborn mice.The discovery of endogenous regenerative potential of the heart in zebrafish and neonatal mice has shifted the cardiac regenerative field towards the utilization of intrinsic regenerative mechanisms in the mammalian heart. The goal of these studies is to understand, and eventually apply, the neonatal regenerative mechanisms into adulthood. To facilitate these studies, the last two decades have seen advancements in the development of injury models in adult mice representative of the diversity of cardiac diseases. Here, we provide an overview for a selection of the most common cardiac ischemic injury models and describe a set of methods used to accurately analyze and quantify cardiac outcomes. Importantly, a comprehensive understanding of cardiac regeneration and repair requires a combination of multiple functional, histological, and molecular analyses.

Autoři článku: Jokumsenhayden6688 (Armstrong McIntosh)