Johnsonyork5736
01) significantly affected the phytoplankton diversity, while nutrients (P less then 0.01) and temperature (P less then 0.01) significantly influenced the eukaryotic diversity. Co-occurrence network displayed the primarily positive interactions (77.66% positive and 22.34% negative) between phytoplankton and micro-eukaryotes. These findings could deepen our understanding of interactions between phytoplankton and micro-eukaryotes and their driving factors under changing aquatic environments of drinking water reservoirs.Benthic indices have been widely used across different coastal ecosystems to assess ecological quality and detect anthropic impacts, but very few studies investigated their effectiveness on sandy beaches. Here, we evaluated and compared the efficacy of 12 assemblage-based benthic indices in assessing ecological quality in beaches, across a gradient of anthropic pressure and natural variability in 90 sandy beach sites. Overall, when sandy beaches were considered collectively, benthic indices had a poor performance in identifying decreases in ecological quality with increasing urbanization. However, when each morphodynamic type was evaluated separately, a few indices, especially those that were calibrated by reference conditions (i.e., M-AMBI, BAT, and BEQI-2), showed promising results for dissipative, and to a lesser extent, intermediate beaches. For reflective beaches, indices performed poorly, likely a reflection of the stronger natural disturbance these beaches are subjected to. Among functional indices, richness was found to be lower in urbanized beaches, but only in dissipative ones. Overall, our results show that benthic indices have the potential to be incorporated in sandy beach management and monitoring programs, especially for dissipative and intermediate beaches. For reflective beaches, given the early stage of studies with benthic indices in beaches, more research is needed to corroborate the observed patterns.This Discussion article aims to explore the potential for a new generation of assay to emerge from cellular and urinary DNA adductomics which brings together DNA-RNA- and, to some extent, protein adductomics, to better understand the role of the exposome in environmental health. Components of the exposome have been linked to an increased risk of various, major diseases, and to identify the precise nature, and size, of risk, in this complex mixture of exposures, powerful tools are needed. Modification of nucleic acids (NA) is a key consequence of environmental exposures, and a goal of cellular DNA adductomics is to evaluate the totality of DNA modifications in the genome, on the basis that this will be most informative. Consequently, an approach which encompasses modifications of all nucleic acids (NA) would be potentially yet more informative. This article focuses on NA adductomics, which brings together the assessment of both DNA and RNA modifications, including modified (2'-deoxy)ribonucleosides (2'-dN/rN), modified nucleobases (nB), plus DNA-DNA, RNA-RNA, DNA-RNA, DNA-protein, and RNA-protein crosslinks (DDCL, RRCL, DRCL, DPCL, and RPCL, respectively). We discuss the need for NA adductomics, plus the pros and cons of cellular vs. AZD5582 IAP inhibitor urinary NA adductomics, and present some evidence for the feasibility of this approach. We propose that NA adductomics provides a more comprehensive approach to the study of nucleic acid modifications, which will facilitate a range of advances, including the identification of novel, unexpected modifications e.g., RNA-RNA, and DNA-RNA crosslinks; key modifications associated with mutagenesis; agent-specific mechanisms; and adductome signatures of key environmental agents, leading to the dissection of the exposome, and its role in human health/disease, across the life course.Antibiotics and pesticides are used extensively by the livestock industry. Agricultural chemicals can pose potential human and environmental health risks due to their toxicity and through their contributions to antimicrobial resistance, and strategies to reduce their emission into the environment are urgently needed. Anaerobic digestion (AD) is a sustainable technology for manure management that produces biogas while also providing an opportunity to degrade agricultural chemicals that are present in manure. While the effects of selected chemicals on biogas production have been investigated previously, little is known about chemical transformations during AD. Using lab-scale AD batch reactors containing dairy manure, degradation kinetics and transformation products (TPs) were investigated for twenty compounds that are likely to be present in manure management systems and that we hypothesized would transform during AD. Digestate samples were extracted using a modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) method and analyzed using liquid chromatography - high-resolution mass spectrometry. Eleven of the tested chemicals degraded, leading to the formation of 47 TPs. Three compounds degraded abiotically only, two degraded biotically only, and six degraded both abiotically and biotically. These results suggest that in addition to renewable energy generation, AD contributes to the degradation of chemical contaminants present in agricultural waste streams. However, the potential toxic effects of TPs require further investigation.Closing the carbon (C) and nitrogen (N) balance has yet to be achieved in aerobic bioprocess due to current methodological drawbacks in the frequency of sampling and detection and the challenge in direct measurement of instantaneous N2 emission. To address this issue, a novel system was developed enabling simultaneous and online determination of gaseous C and N species (N2, N2O, NO, NH3, CO2 and CH4) from aerobic composting at a high frequency of 120 times·d-1. A helium‑oxygen gas mixture was used to replace the air in the system to enable direct measurement of N2 emission, and three different gas exchange methods were assessed in their ability to minimize atmospheric background N2 1) the N2-free gas purging method; 2) one cycle of the evacuation-refilling procedure; 3) one cycle of evacuating and refilling followed by N2-free gas purging. Method 3 was demonstrated as an optimum N2-removal method, and background N2 concentrations decreased to ~66 μmol·mol-1 within 11.6 h. During the N2-free gas purging period, low temperature incubation at 15 °C reduced CO2, CH4, NO, N2O and NH3 losses by 80.5 %, 41-fold, 10-fold, 11,403-fold and 61.4 %, respectively, compared with incubation at 30 °C. Therefore, a fast and low-perturbation N2 removal method was developed, namely the evacuating/refilling-low temperature purging method. Notably, all C and N gases exhibited large within-day variations during the peak emission period, which can be addressed by high-frequency measurement. Based on the developed method, up to 97.8 % of gaseous C and 95.6 % of gaseous N losses were quantified over a 43-day compost incubation, with N2 emission accounting (on average) for 5.8 % of the initial total N. This system for high frequency measurement of multiple gases (including N2) provides a novel tool for obtaining a deeper understanding of C and N turnover and more accurate estimation of reactive N and greenhouse gas emissions during composting.Iron and steel industries discharge a large amount of atmospheric particulate matter (PM) containing metals and metallic nanoparticles (NPs) that contaminate not only the air, but also settle into the aquatic environments. However, the effects of settleable atmospheric particulate matter (SePM) on aquatic fauna are still poorly understood. This study aimed to evaluate the sublethal effects of a short-term exposure to a realistic concentration of SePM on Nile tilapia (Oreochromis niloticus) using a multi-biomarker approach relative ventricular mass (RVM) and heart function, blood oxidative stress, stress indicators, hemoglobin concentration, metallic NPs internalization, and metal bioaccumulation. Exposed fish exhibited reduced hemoglobin content and elevated plasma cortisol and glucose levels, reflecting stressed states. Furthermore, SePM caused blood oxidative stress increasing lipid and protein oxidation, decreasing glutathione levels, and inhibiting superoxide and glutathione reductase activities. SePM exposure also increased RVM and improved cardiac performance, increasing myocardial contractile force and rates of contraction and relaxation. In the heart tissue there was a significant accumulation of Fe > Zn > > Cr > Cu > Rb > Ni > V > Mn > Se > Mo > As. On the other hand, in the erythrocytes there was significant accumulation of Sn > Zn > > Cr > Ti > Mn = Ni > Nb > As > Bi. The highest bioaccumulation factors were found for Cr, Zn and Ni in both tissues. NPs (Ti, Sn, Al, Fe, Cu, Si, Zn) were also detected in ventricular myocardium of fish exposed and nanocrystallographic analysis revealed a predominance of anatase phase of TiO2-NP, which is regarded to be more cytotoxic. The association between blood oxidative stress and energy expenditure to sustain increased cardiac pumping capacity under stress condition suggests that SePM has negative impacts on fish physiological performance, threatening their survival, growth rate and/or population establishment.Because exposure to bisphenol A (BPA) has been linked to health problems in humans and wildlife, BPA analogues have been synthesized to be considered as replacement molecules. We here have examined estrogenic activity of BPA and five of its analogues, BPAF, BPE, BPC, BPC-Cl, and BPS by a combination of zebrafish-based in vivo and in vitro assays. We used transgenic estrogen reporter (5xEREGFP) fish to study agonistic effects of bisphenols. Exposures to BPA, BPAF, BPE, and BPC, induced GFP expression in estrogen reporter fish at low exposure concentrations in the heart valves and at higher concentrations in the liver, whereas BPC-Cl activated GFP expression mainly in the liver, and BPS faintly in the heart only. The in vivo response was compared to in vitro estrogenicity of bisphenol exposure using reporter cells that express the zebrafish estrogen receptors driving expression of an estrogen response element (ERE)-luciferase reporter. In these cells, BPA, BPAF, BPC, BPE and BPS preferentially activated Esr1, whereas BPC-Cl preferentially activated Esr2a. By quantitative PCR we found that exposure to BPAF induced expression of the classical estrogen target genes vtg1, esr1, and cyp19a1b in a concentration response manner, but the most responsive target gene was f13a1a. Exposure to BPC-Cl resulted in a different expression pattern of vtg1 and f13a1a with an activation at low concentrations, followed by a declining expression at higher concentrations. Because expression of f13a1a was strongly activated by all compounds tested, we suggest including this mRNA as a biomarker for estrogenicity in larval fish. We further showed that exposure to BPAF and BPC-Cl increased E2 levels in zebrafish larvae, indicating that bisphenol exposures result in a feed-forward response that can further augment the estrogenic activity of these compounds.X-linked retinoschisis (XLRS) has been associated with retinal vascular abnormalities, but retinal vasoproliferative tumor (RVPT) has been rarely reported in this context. We describe the case of a 12-month-old boy presenting with esotropia of his left eye due to extensive exudation secondary to RVPT. Right eye examination revealed macular and bullous peripheral retinoschisis. Combining laser photocoagulation and intravitreal injections of anti-vascular endothelial growth factor allowed control of the exudative process at 12 months follow-up. RVPT could be the first sign of XLRS.