Johansencarlson5792

Z Iurium Wiki

It decreased serum leptin levels. On the other hand, irisin did not affect serum luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone. It also increased gene expression of tyrosine hydroxylase and adrenoceptor alpha 1A in the medial preoptic area and nucleus accumbens.

Irisin provided a marked enhancement of HFD-induced decrease in libido, potency, sexual performance, and erection in SBT. Taken together, our results emphasize that irisin has a restorative and improver role in HFD-induced reproductive dysfunctions in obese male rats.

Irisin provided a marked enhancement of HFD-induced decrease in libido, potency, sexual performance, and erection in SBT. Taken together, our results emphasize that irisin has a restorative and improver role in HFD-induced reproductive dysfunctions in obese male rats.Recent studies on the differences in cognitive ability between individuals focused on two aspects one is whether the individual differences in cognitive ability are related to brain size, the other is whether they pertain to certain personality traits. To explore these two hypotheses, we tested the personality traits, cognitive abilities and brain volumes of western mosquitofish (Gambusia affinis). First, a color preference test was conducted to select two unbiased colors for G. affinis for subsequent cognitive tests. The results showed that G. affinis had a great preference for red and green to yellow and blue, therefore, the red - green combination was selected for the study of cognitive abilities. Then, we explored the relationship among cognition, personality and brain morphology through cognitive abilities tests, personality traits and brain volume measurements. We found that there was a trade-off among cognition, personality and brain morphology. For example, more active individuals found food faster, but have also poor memory; Those individuals with larger corpus cerebelli were bolder while they were less likely to find food; The individuals that found food faster were more active and had a smaller inferior lobe. The color preference test provides a reliable way for selecting unbiased colors for behavioral studies in G. affinis. Meanwhile, our study indicates that there exists a balance mechanism among cognition, personality and brain morphology.Why do some species develop rapidly, while others develop slowly? Mammals are highly variable in the pace of growth and development over every stage of ontogeny, and this basic variable - the pace of ontogeny - is strongly associated with a wide range of phenotypes in adults, including allometric patterns of brain and body size, as well as the pace of neurodevelopment. This analysis describes variation in the pace of embryonic development in eutherian mammals, drawing on a collected dataset of embryogenesis in fifteen species representing rodents, carnivores, ungulates, and primates. Mammals vary in the pace of every stage of embryogenesis, including stages of early zygote differentiation, blastulation and implantation, gastrulation, neurulation, somitogenesis, and later stages of basic limb, facial, and brain development. This comparative review focuses on the general variation of rapid vs. slow mammalian embryogenesis, with a focus on the pace of somite formation, brain vs. somatic development, and how embryonic pacing predicts later features of ontogeny.

Our previous study demonstrated that docosahexaenoic acid (DHA), an endogenous G protein-coupled receptor 120 (GPR120)/free fatty acid receptor (FFAR) 4 agonist, attenuated the liver inflammation in nonalcoholic steatohepatitis (NASH), while exacerbated liver inflammation was observed in the GPR120/FFAR4 knockout (GPR120/FFAR4KO) mice. Recently, abdominal adiposity has been reported to correlate with the severity of inflammation and fibrosis in patients with NASH. In this study, we investigated whether the activation of GPR120/FFAR4 suppressed the inflammation of the adipose tissue and whether these suppressive effects attenuated the development of NASH.

A choline-deficient and 0.1% methionine-containing high-fat (CDAHF) diet was used to create a mouse model of NASH. DHA was orally administered to the mice for 1 week. Epididymal fat pads which collected from the control-fed wild-type (WT) or GPR120/FFAR4KO mice were used as ex vivo white adipose tissue (WAT) culture systems.

The mice fed a CDAHF diet for 2 weeks showed NASH-like liver diseases. In the WAT of mice fed with the CDAHF diet, inflammation and fibrosis were significantly increased, and the administration of DHA suppressed these phenomena. In an ex vivo adipocyte culture study, DHA dose-dependently suppressed the lipopolysaccharide-induced inflammation in the adipocyte tissue of WT mice, which was reversed by pretreatment with AH7614, a GPR120/FFAR4 antagonist, but not GPR40 or peroxisome proliferator-activated receptor γ antagonist.

These findings suggest that the activation of GPR120/FFAR4 may suppress the inflammation of adipocytes, which could be a key pathway to prevent the development of NASH.

These findings suggest that the activation of GPR120/FFAR4 may suppress the inflammation of adipocytes, which could be a key pathway to prevent the development of NASH.

Lipodystrophy includes a wide group of diseases characterized by reduction, absence or altered distribution of adipose tissue. Lipodystrophies are classified into generalized or partial, according to the fat distribution, and congenital or acquired, considering the aetiology.

Impaired glucose and lipid metabolism is typically present, thus severe insulin resistance, diabetes mellitus, dyslipidemia and hepatic steatosis are frequent complications. Because of the rarity and the diversification of lipodystrophies, diagnosis might be challenging, typically for partial forms that cannot be easily recognized, leading to progression of the several metabolic abnormalities associated. First management of lipodystrophy is diet and lifestyle changes, followed by the treatment of metabolic complications. Replacement therapy with metreleptin, currently available in the United States and Europe, has shown improvement of metabolic profile in a great number of patients with lipodystrophy. Key messages The purpose of thistrophic types and to present specific steps for obtaining early diagnosis and assessing the best treatment of lipodystrophy.Heusler compound nanoparticles with good structural ordering need to be investigated as a potential material class for magneto-thermal applications requiring heat generation in presence of an oscillating magnetic field. Here, we report an important finding of a structural parameter related to the product of the strain and the coherent crystallite size, that can be used to efficiently control the structural ordering and the magnetic property of the Heulser compound nanoparticles. The optimization of this product parameter is found to enhance both the structural ordering and magnetic transition temperature in Co2FeSn Heusler nanoparticles. Furthermore, using magnetic hyperthermia measurements we demonstrate the possibility of heat generation using Heusler compound nanoparticles comparable to that of conventional magnetic nanoparticles. This shall lead to the development of Heulser compounds for similar applications.Aligned large-scale deposition of nanowires grown in a bottom-up manner with high yield is a persisting challenge but required to assemble single-nanowire devices effectively. Contact printing is a powerful strategy in this regard but requires so far adequate adjustment of the tribological surface interactions between nanowires and target substrate, e.g. by microtechnological surface patterning, chemical modifications or lift-off strategies. To expand the technological possibilities, we explored two-directional pressure-controlled contact printing as an alternative approach to efficiently transfer nanowires with controlled density and alignment angle onto target substrates through vertical-force control. To better understand this technology and the mechanical behavior of nanowires during the contact printing process, the dynamic bending behavior of nanowires under varying printing conditions is modeled by using the finite element method. We show that the density and angular orientation of transferred nanowires can be controlled using this three-axis printing approach, which thus enables potentially a controlled nanowire device fabrication on a large scale.The figure of merit (FOM) of plasmon lattice resonance (PLR) sensors based on the array of metal/Si/SiO2nanoparticles has been investigated. We demonstrate the shape and material of metal nanoparticles have remarkable effects on the PLR and FOM. FOM is governed by full-widths at half maximum (FWHM) and sensitivity of the PLR. Three different types of PLR can be generated by changing Ag nanoparticles' shapes (pillars, cubes, spheres). One (named PLR1) is mainly originated from the coupling between Mie resonance of individual Si nanopillars and diffraction waves. PLR1of Ag/Si/SiO2nanoparticle arrays is limited in sensing applications due to lower intensity (for Ag pillars and Ag cubes), or smaller FOM (for Ag spheres). The other two are named PLR2. PLR2of Ag/Si/SiO2nanoparticle array with Ag pillars (or Ag cubes) is mainly originated from the coupling between the quadrupole resonance of individual Ag nanopillars (or Ag cubes) and diffraction waves. While PLR2of Ag/Si/SiO2nanoparticle array with Ag spheres is mainly originated from the coupling between dipole resonance of individual Ag nanospheres and diffraction waves. The optimal Ag nanoparticles' shape in FOM is pillar due to the smallest FWHM of PLR2of Ag/Si/SiO2nanoparticle array with Ag pillars. Meanwhile, a comparison of FOM between Au, Ag and Al nanopillars of fixed size is made. The optimal material of metal nanopillars to obtain a high FOM is Ag due to higher sensitivity and narrower FWHM.Objectives. Increased radiation doses could improve local control and overall survival of lung cancer patients, however, this could be challenging without exceeding organs at risk (OAR) dose constraints, especially for patients with advanced-stage disease. Increasing OAR doses could reduce the therapeutic ratio and quality of life. It is therefore important to investigate methods to increase the dose to target volume without exceeding OAR dose constraints.Methods. Gross tumour volume (GTV) was contoured on synthetic computerised tomography (sCT) datasets produced using the Velocity adaptive radiotherapy software for eleven patients. The fractions where GTV volume decreased compared to that prior to radiotherapy (reference plan) were considered for personalised progressive dose escalation. The dose to the adapted GTV (GTVAdaptive) was increased until OAR doses were affected (as compared to the original clinical plan). Planning target volume (PTV) coverage was maintained for all plans. Doses were also escalatedl without increasing toxicities.Objective.One promising approach towards further improving cochlear implants (CI) is to use brain signals controlling the device in order to close the auditory loop. Initial electroencephalography (EEG) studies have already shown promising results. However, they are based on noninvasive measurements, whereas implanted electrodes are expected to be more convenient in terms of everyday-life usability. If additional measurement electrodes were implanted during CI surgery, then invasive recordings should be possible. Furthermore, implantation will provide better signal quality, higher robustness to artefacts, and thus enhanced classification accuracy.Approach.In an initial project, three additional epidural electrodes were temporarily implanted during the surgical procedure. After surgery, different auditory evoked potentials (AEPs) were recorded both invasively (epidural) and using surface electrodes, with invasively recorded signals demonstrated as being markedly superior. In this present analysis, cortical evoked response audiometry (CERA) signals recorded in seven patients were used for single-trial classification of sounds with different intensities.

Autoři článku: Johansencarlson5792 (Dorsey Goff)