Johannesenlee1218

Z Iurium Wiki

We present a collagen-mimetic protein of bacterial origin based upon a modified subdomain of the collagen-like Sc12 protein from Streptococcus pyogenes, as an alternative collagen-like biomaterial platform that is highly soluble, forms stable, homogeneous, fluid-like solutions at elevated concentrations, and that can be efficiently fabricated into hydrogel materials over a broad range of pH conditions. This extended bacterial collagen-like (eBCL) protein is expressed in a bacterial host and purified as a trimeric assembly exhibiting a triple helical secondary structure in its collagen-like subdomain that is stable near physiological solution conditions (neutral pH and 37 °C), as well as over a broad range of pH conditions. We also show how this sequence can be modified to include biofunctional attributes, in particular, the Arg-Gly-Asp (RGD) sequence to elicit integrin-specific cell binding, without loss of structural function. Furthermore, through the use of EDC-NHS chemistry, we demonstrate that members of this eBCL protein system can be covalently cross-linked to fabricate transparent hydrogels with high protein concentrations (at least to 20% w/w). These hydrogels are shown to possess material properties and resistance to enzymatic degradation that are comparable or superior to a type I collagen control. Moreover, such hydrogels containing the constructs with the RGD integrin-binding sequence are shown to promote the adhesion, spreading, and proliferation of C2C12 and 3T3 cells in vitro. Due to its enhanced solubility, structural stability, fluidity at elevated concentrations, ease of modification, and facility of cross-linking, this eBCL collagen-mimetic system has potential for numerous biomedical material applications, where the ease of processing and fabrication and the facility to tailor the sequence for specific biological functionality are desired.The development of smart size-tunable drug delivery nanoplatform enables the solving of the paradox of inconsistent size-dependence of high tumor accumulation and deep penetration during its delivery process, thus achieving superior cancer treatment efficacy. Herein, we report a size-shrinkable nanomicelle complex system with an initial size of 101 nm enabling effective retention around the tumor periphery and could destruct to ultrasmall nanomicelles triggered by a near-infrared (NIR) laser to realize the deep tumor penetration. The nanomicelle system is consisted of an upper critical solution temperature (UCST)-type block copolymer poly(acrylamide-acrylonitrile)-polyethylene glycol-lipoic acid (p(AAm-co-AN)-g-PEG-LA) encapsulating gold nanorods. Upon the irradiation of the NIR laser at the tumor site, gold nanorods could convert the light energy to heat energy, realizing the photothermal ablation of superficial tumor tissue. Concurrently, the large micelles split into a cascade of ultrasmall micelles (∼7 nm), which could easily penetrate into the deep site of the tumor and achieve the in situ "on-demand" release of the loaded drug to exert superior combined photothermal-chemotherapy of cancer. By the precise manipulation of laser, the micelle complex system realized the hierarchical killing from the superficial-to-deep tumor and achieved almost complete tumor growth inhibition on the established xenograft liver tumor mice model.One of the biggest bottlenecks in modern drug discovery efforts is in tackling the undruggable proteome. Currently, over 85% of the proteome is still considered undruggable because most proteins lack well-defined binding pockets that can be functionally targeted with small molecules. Tackling the undruggable proteome necessitates innovative approaches for ligand discovery against undruggable proteins as well as the development of new therapeutic modalities to functionally manipulate proteins of interest. Chemoproteomic platforms, in particular activity-based protein profiling (ABPP), have arisen to tackle the undruggable proteome by using reactivity-based chemical probes and advanced quantitative mass spectrometry-based proteomic approaches to enable the discovery of "ligandable hotspots" or proteome-wide sites that can be targeted with small-molecule ligands. These sites can subsequently be pharmacologically targeted with covalent ligands to rapidly discover functional or nonfunctional binders against therapf next-generation small-molecule induced-proximity-based therapeutic modalities that go beyond degradation. Exciting days lie ahead in this field as chemical biology becomes an increasingly major driver in drug discovery, and chemoproteomic approaches are sure to be a mainstay in developing next-generation therapeutics.There has been a growing interest in the development of efficient flexible organic solar cells (OSCs) due to their unique capacity to provide energy sources for flexible electronics. To this end, it is required to design a compatible interlayer with low processing temperature and high electronic quality. In this work, we present that the electronic quality of the ZnO interlayer fabricated from a low-temperature (130 °C) sol-gel method can be significantly improved by doping an organic small molecule, TPT-S. The doped TPT-S, on the one hand, passivates uncoordinated Zn-related defects by forming N-Zn bonds. On the other hand, photoinduced charge transfer from TPT-S to ZnO is confirmed, which further fills up electron-deficient trap states. This renders ZnO improved electron transport capability and reduced charge recombination. By illuminating devices with square light pulses of varying intensities, we also reveal that an unfavorable charge trapping/detrapping process observed in low-temperature-processed devices is significantly inhibited after TPT-S doping. OSCs based on PBDB-T-2FIT-4F with ZnOTPT-S being the cathode interlayer yield efficiencies of 12.62 and 11.33% on rigid and flexible substrates, respectively. These observations convey the practicality of such hybrid ZnO in high-performance flexible devices.To improve automobile safety, identifying driver fatigue is considerably crucial because it is one of the main causes of traffic accidents. In this research, smart systems based on a triboelectric nanogenerator are designed, which can provide driver status monitoring and fatigue warning in real time. The smart system consists of a self-powered steering-wheel angle sensor (SSAS) and a signal processing unit. The SSAS, which comprises a stator, a rotor, and a sleeve, is mounted on the steering rod, and the electrodes are designed with a phase difference to improve the resolution of the sensor. The turning angle of the steering wheel operated by the driver is recorded by the SSAS; meanwhile, the number of rotations, the average angle, and other parameters in the driver's recorded data are analyzed by the signal processing unit from which a warning threshold for each parameter is determined. The system assesses the status of the driver in real-time by comparing these parameters and threshold values, and experimental results demonstrate that driver status is accurately judged. This work has important potential applications in the fields of traffic safety and intelligent driving.Development of smart switchable surfaces to solve the inevitable bacteria attachment and colonization has attracted much attention; however, it proves very challenging to achieve on-demand regeneration for noncontaminated surfaces. We herein report a smart, host-guest interaction-mediated photo/temperature dual-controlled antibacterial surface, topologically combining stimuli-responsive polymers with nanobactericide. Selitrectinib inhibitor From the point of view of long-chain polymer design, the peculiar hydration layer generated by hydrophilic poly(2-hydroxyethyl methacrylate) (polyHEMA) segments severs the route of initial bacterial attachment and subsequent proliferation, while the synergistic effect on chain conformation transformation poly(N-isopropylacrylamide) (polyNIPAM) and guest complex dissociation azobenzene/cyclodextrin (Azo/CD) complex greatly promotes the on-demand bacterial release in response to the switch of temperature and UV light. Therefore, the resulting surface exhibits triple successive antimicrobial functions simultaneously (i) resists ∼84.9% of initial bacterial attachment, (ii) kills ∼93.2% of inevitable bacteria attack, and (iii) releases over 94.9% of killed bacteria even after three cycles. The detailed results not only present a potential and promising strategy to develop renewable antibacterial surfaces with successive antimicrobial functions but also contribute a new antimicrobial platform to biomedical or surgical applications.The self-assembly of block copolymers in a confined space has been proven to be a facile and robust strategy for fabricating assembled structures with various potential applications. Herein, we employed a new pH-responsive polymer self-assembly method to regulate ion transport inside artificial nanochannels. The track-etched asymmetric nanochannels were functionalized with PS22k-b-P4VP17k/hPS4k blend polymers, and the ionic conductance and rectification properties of the proposed system were investigated. The pH-actuated changes in the surface charge and wettability resulted in the selective pH-gated ionic transport behavior. The designed system showed a good switching property to the pH stimulus and could recover during the repetitive experiments. The gating ability of the polymer-nanochannel system increased with increasing the weight of the homopolymer, and the proposed platform demonstrated robust stability and reusability. Numerical and the dissipative particle dynamics simulations were implemented to emulate the pH-dependent self-assembling behavior of diblock copolymers in a confined space, which were consistent with the experimental observations. As an example of the self-assembly of polymers in nanoconfinements, this work provides a facile and robust strategy for the regulation of ion transport in synthetic nanochannels. Meanwhile, this work can be further extended to design artificial smart nanogates for various applications such as mass delivery and energy harvesting.The high electrical conductivity of 1T'-WTe2 deserves particular attention and may show a high potential for hydrogen evolution reaction (HER) catalysis. However, the actual activity certainly does not match expectations, and the inferior HER activity is actually still ambiguous at the atomic level. Unraveling the underlying HER behaviors of 1T'-WTe2 will give rise to a new family of HER catalysts. Our structural analysis reveals that the inferior activity could result from insufficient charge density around the Te site and blocked adsorption channel at the W site, which cause too weak hydrogen adsorption. Herein, we fabricated a single WTe2 sheet-based electrocatalytic microdevice for directly extracting enhanced HER activity of doped electronegative F atoms. The overpotential at -10 mA cm-2 reduced to 0.27 V after F doping compared to 0.45 V for the original state. In situ electrochemical measurement and electrical tests on a single sheet indicate that doped F can regulate surface charge and hydrogen adsorption behavior. Furthermore, the theory simulation uncovers that the smaller atomic radius of F contributes to an empty coordination environment; meanwhile, strong electronegativity induces hydrogen adsorption. Thus, the ΔGH* at W sites around the doped F is as low as 0.18 eV. Synergistically modulating the charge properties and opening steric hindrance provides a new pathway to rationally construct electrocatalysts and beyond.

Autoři článku: Johannesenlee1218 (McElroy Templeton)