Jochumsenrask3011

Z Iurium Wiki

The accurate calculation of chemical properties using density-functional theory (DFT) requires the use of a nearly complete basis set. In chemical systems involving hundreds to thousands of atoms, the cost of the calculations place practical limitations on the number of basis functions that can be used. Therefore, in most practical applications of DFT to large systems, there exists a basis-set incompleteness error (BSIE). In this article, we present the next iteration of the basis-set incompleteness potentials (BSIPs), one-electron potentials designed to correct for basis-set incompleteness error. The ultimate goal associated with the development of BSIPs is to allow the calculation of molecular properties using DFT with near-complete-basis-set results at a computational cost that is similar to a small basis set calculation. In this work, we develop BSIPs for 10 atoms in the first and second rows (H, B-F, Si-Cl) and 15 common basis sets of the Pople, Dunning, Karlsruhe, and Huzinaga types. Our new BSIPs are constructed to minimize BSIE in the calculation of reaction energies, barrier heights, noncovalent binding energies, and intermolecular distances. The BSIPs were obtained using a training set of 15 944 data points. The fitting approach employed a regularized linear least-squares method with variable selection (the LASSO method), which results in a much better fit to the training data than our previous BSIPs while, at the same time, reducing the computational cost of BSIP development. The proposed BSIPs are tested on various benchmark sets and demonstrate excellent performance in practice. Our new BSIPs are also transferable; i.e., they can be used to correct BSIE in calculations that employ density functionals other than the one used in the BSIP development (B3LYP). Finally, BSIPs can be used in any quantum chemistry program that have implemented effective-core potentials without changes to the software.Reactions with post-transition-state bifurcations (PTSBs) involve initial ambimodal transition-state structures followed by an unstable region leading to two possible products. PTSBs are seen in many organic, organometallic, and biosynthetic reactions, but analyzing the origins of selectivity for these reactions is challenging, in large part due to the complex nature of the potential energy surfaces involved, which precludes analyses based on single intrinsic reaction coordinate (IRC; steepest-descent path in mass-weighted coordinate). While selectivity can be predicted using molecular dynamics simulation, connecting results from such calculations to the topography of potential energy surfaces is difficult. In the present work, a method for generating two-dimensional potential energy surfaces for PTSBs is described. The first dimension starts with the IRC for the first transition-state structure, followed by a modified reaction coordinate that reaches the second transition-state structure, which interconverts the two products of a bifurcating reaction path. The IRC for the second transition-state structure constitutes the second dimension. In addition, a method for mapping trajectories from Born-Oppenheimer molecular dynamics simulations onto these surfaces is described. Both approaches are illustrated with representative examples from the field of organic chemistry. The 2D-PESs for five asymmetric cases tested have clear tilted topography after the first transition-state structure, and the tilted direction correlates well with the selectivity observed from previous dynamic simulation. MDV3100 ic50 Instead of selecting reaction coordinates by chemical intuition, our method provides a general means to construct two-dimensional potential energy surfaces for reactions with post-transition-state bifurcations.Dysregulation of protein translation is a key driver for the pathogenesis of many cancers. link2 Eukaryotic initiation factor 4A (eIF4A), an ATP-dependent DEAD-box RNA helicase, is a critical component of the eIF4F complex, which regulates cap-dependent protein synthesis. The flavagline class of natural products (i.e., rocaglamide A) has been shown to inhibit protein synthesis by stabilizing a translation-incompetent complex for select messenger RNAs (mRNAs) with eIF4A. Despite showing promising anticancer phenotypes, the development of flavagline derivatives as therapeutic agents has been hampered because of poor drug-like properties as well as synthetic complexity. A focused effort was undertaken utilizing a ligand-based design strategy to identify a chemotype with optimized physicochemical properties. Also, detailed mechanistic studies were undertaken to further elucidate mRNA sequence selectivity, key regulated target genes, and the associated antitumor phenotype. This work led to the design of eFT226 (Zotatifin), a compound with excellent physicochemical properties and significant antitumor activity that supports clinical development.Two shape-persistent arylene ethynylene macrocycles have been designed and synthesized as scaffolds to bind the nonpolar molecule 1,4-diiodobutadiyne. Binding via halogen bonding interactions between the pyridine moieties of the macrocycle and 1,4-diiodobutadiyne is predicted by density functional theory calculations and has been demonstrated in solution by 13C NMR titrations. The binding constant for the macrocycle-monomer complex (K = 10.5 L mol-1) is much larger than for other comparable halogen bonds, strongly supporting cooperative binding of both ends of the diyne. These results demonstrate a fully inserted geometry of 1,4-diiodobutadiyne in the complex.Recent advances have led to numerous landmark discoveries of [4Fe4S] clusters coordinated by essential enzymes in repair, replication, and transcription across all domains of life. The cofactor has notably been challenging to observe for many nucleic acid processing enzymes due to several factors, including a weak bioinformatic signature of the coordinating cysteines and lability of the metal cofactor. To overcome these challenges, we have used sequence alignments, an anaerobic purification method, iron quantification, and UV-visible and electron paramagnetic resonance spectroscopies to investigate UvrC, the dual-incision endonuclease in the bacterial nucleotide excision repair (NER) pathway. The characteristics of UvrC are consistent with [4Fe4S] coordination with 60-70% cofactor incorporation, and additionally, we show that, bound to UvrC, the [4Fe4S] cofactor is susceptible to oxidative degradation with aggregation of apo species. Importantly, in its holo form with the cofactor bound, UvrC forms high affinity complexes with duplexed DNA substrates; the apparent dissociation constants to well-matched and damaged duplex substrates are 100 ± 20 nM and 80 ± 30 nM, respectively. This high affinity DNA binding contrasts reports made for isolated protein lacking the cofactor. Moreover, using DNA electrochemistry, we find that the cluster coordinated by UvrC is redox-active and participates in DNA-mediated charge transport chemistry with a DNA-bound midpoint potential of 90 mV vs NHE. This work highlights that the [4Fe4S] center is critical to UvrC.Manganese oxides have been proposed as promising geomedia to remove trace organic contaminants in both natural soils and artificial infiltration systems. Although MnOx-based redox processes have been largely investigated, little is known on the effects of water flow and dissolved MnII on manganese-mediated redox reactions in saturated porous media. Here, we have demonstrated that the reactive transport of a widely used quinolone antibiotic, pipemidic acid (PIP), in MnO2-coated sand (MCS) columns is altered by the presence of dissolved MnII, generated in situ as reduced ions or present in inflow solution. link3 Decreasing the flow rate or flow interruption facilitated oxidation reactions and generated redox byproducts (MnII and PIPox). However, preloading of MCS columns with dissolved MnII led to suppressed reactivity with PIP. When PIP and MnII are simultaneously injected, competition between PIP and MnII for binding at the edge sites takes place during the initial kinetic phase of reaction, while at a later breakthrough time MnII will occupy both edge and vacancy sites due to the continuous supply of MnII. We also developed a reactive transport model that accounts for adsorption kinetics to predict changes in transport behavior of antibiotics in the presence of different doses of dissolved MnII. This work has strong implications for an accurate assessment of the reactivity of manganese oxides used as engineered geomedia for quinolone remediation and in developing transport models of antibiotics in natural systems.In light of the global antimicrobial-resistance crisis, there is an urgent need for novel bacterial targets and antibiotics with novel modes of action. It has been shown that Pseudomonas aeruginosa elastase (LasB) and Clostridium histolyticum (Hathewaya histolytica) collagenase (ColH) play a significant role in the infection process and thereby represent promising antivirulence targets. Here, we report novel N-aryl-3-mercaptosuccinimide inhibitors that target both LasB and ColH, displaying potent activities in vitro and high selectivity for the bacterial over human metalloproteases. Additionally, the inhibitors demonstrate no signs of cytotoxicity against selected human cell lines and in a zebrafish embryo toxicity model. Furthermore, the most active ColH inhibitor shows a significant reduction of collagen degradation in an ex vivo pig skin model.The effects of extreme concentrations of toxic metalloids, such as arsenic (As) and antimony (Sb), on larval amphibians are not well-understood. We sampled Western Toad tadpoles (Anaxyrus boreas) living in As- and Sb-contaminated wetlands throughout their development. Although the tadpoles completed metamorphosis, they accumulated among the highest concentrations of As and Sb ever reported for a living vertebrate (3866.9 mg/kg; 315.0 mg/kg (dry weight), respectively). Ingestion of contaminated sediment had a more important role in metalloid accumulation than aqueous exposure alone. Metalloids were initially concentrated in the gut; however, by metamorphosis, the majority were found in other tissues. These concentrations subsequently decreased with the onset of metamorphosis, yet remained quite elevated. Sublethal effects, including delayed development and reduced size at metamorphosis, were associated with elevated metalloid exposure. The presence of organic arsenicals in tadpole tissues suggests they have the ability to biomethylate inorganic As compounds. The arsenical trimethyl arsine oxide accounted for the majority of extractable organic As, with lesser amounts of monomethylarsonic acid and dimethylarsinic acid. Our findings demonstrate remarkable tolerance of toad tadpoles to extreme metalloid exposure and implicate physiological processes mediating that tolerance.Solute-solvent systems are an important topic of study, as the effects of the solvent on the solute can drastically change its properties. Theoretical studies of these systems are done with ab initio methods, molecular simulations, or a combination of both. The simulations of molecular systems are usually performed with either molecular dynamics (MD) or Monte Carlo (MC) methods. Classical MD has evolved much in the last decades, both in algorithms and implementations, having several stable and efficient codes developed and available. Similarly, MC methods have also evolved, focusing mainly in creating and improving methods and implementations in available codes. In this paper, we provide some enhancements to a configurational bias Monte Carlo (CBMC) methodology to simulate flexible molecules using the molecular fragments concept. In our implementation the acceptance criterion of the CBMC method was simplified and a generalization was proposed to allow the simulation of molecules with any kind of fragments. We also introduce the new version of DICE, an MC code for molecular simulation (available at https//portal.

Autoři článku: Jochumsenrask3011 (Napier Troelsen)