Jessenscarborough9862
Among the membranes obtained by solution-cast, which generally exhibited isotropic proton transport behavior, the Nafion uncrystallized membrane showed the lowest water diffusion coefficients and conductivities, highlighting the correlation between low crystallinity and a more branched and tortuous structure of hydrophilic channels. Finally, the dynamic mechanical analysis (DMA) tests demonstrated the poor elastic modulus for both uncrystallized and oriented membranes, which should be avoided in high-temperature fuel cells.Underwater vehicles (UVs) are subjected to various environmental disturbances due to ocean currents, propulsion systems, and un-modeled disturbances. In practice, it is very challenging to design a control system to maintain UVs stayed at the desired static position permanently under these conditions. Therefore, in this study, a nonlinear dynamics and robust positioning control of the over-actuated autonomous underwater vehicle (AUV) under the effects of ocean current and model uncertainties are presented. First, a motion equation of the over-actuated AUV under the effects of ocean current disturbances is established, and a trajectory generation of the over-actuated AUV heading angle is constructed based on the line of sight (LOS) algorithm. Second, a dynamic positioning (DP) control system based on motion control and an allocation control is proposed. For this, motion control of the over-actuated AUV based on the dynamic sliding mode control (DSMC) theory is adopted to improve the system robustness under the effects of the ocean current and model uncertainties. In addition, the stability of the system is proved based on Lyapunov criteria. Then, using the generalized forces generated from the motion control module, two different methods for optimal allocation control module the least square (LS) method and quadratic programming (QP) method are developed to distribute a proper thrust to each thruster of the over-actuated AUV. Simulation studies are conducted to examine the effectiveness and robustness of the proposed DP controller. The results show that the proposed DP controller using the QP algorithm provides higher stability with smaller steady-state error and stronger robustness.Proteinopathy refers to a group of disorders defined by depositions of amyloids within living tissue. Neurodegenerative proteinopathies, including Alzheimer's disease, Parkinson's disease, Creutzfeldt-Jakob disease, and others, constitute a large fraction of these disorders. Amyloids are highly insoluble, ordered, stable, beta-sheet rich proteins. The emerging theory about the pathophysiology of neurodegenerative proteinopathies suggests that the primary amyloid-forming proteins, also known as the prion-like proteins, may exist as multiple proteoforms that contribute differentially towards the disease prognosis. It is therefore necessary to resolve these disorders on the level of proteoforms rather than the proteome. The transient and hydrophobic nature of amyloid-forming proteins and the minor post-translational alterations that lead to the formation of proteoforms require the use of highly sensitive and specialized techniques. Several conventional techniques, like gel electrophoresis and conventional mass spectrometry, have been modified to accommodate the proteoform theory and prion-like proteins. Several new ones, like imaging mass spectrometry, have also emerged. This review aims to discuss the proteoform theory of neurodegenerative disorders along with the utility of these proteomic techniques for the study of highly insoluble proteins and their associated proteoforms.Paenibacillus larvae is a Gram-positive bacterium, the spores of which are the causative agent of the most destructive brood disease of honeybees, American foulbrood (AFB). Obtaining viable spores of pathogen strains is requisite for different studies concerning AFB. The aim of this work was to investigate the effects of five saccharides that may naturally occur in higher amounts in bee larvae on in vitro sporulation of P. DC661 larvae. The effect of individual saccharides at different concentrations on spore yields of P. larvae strains of epidemiologically important ERIC genotypes was examined in Columbia sheep blood agar (CSA) and MYPGP agar media. It was found that fructose in ERIC I and trehalose in ERIC II strains at concentrations in the range of 0.5-2% represent new sporulation factors that significantly enhanced the yields of viable spores in both media, mostly in a concentration-dependent manner. The enhancements in spore yield were mainly caused by improvements of the germination ability of the spores produced. Glucose, maltose and sucrose at 1% or 0.5% concentrations also supported sporulation but to a lower extent and not in all strains and media. Based on the knowledge gained, a novel procedure was proposed for the preparation of viable P. larvae spores with supposed improved quality for AFB research.The cross-river subway in the Hangzhou Bay area often passes through deep, thick, soft soil at the bottom of the river. At the same time, overlying erosion, siltation, and changes in water levels adversely affect the deformation of the subway, thereby causing hidden dangers to its safe operation. Using two-way dynamic triaxial testing, the effects of cyclic loading of the cross-river subway on the soft clay foundation were investigated for the first time, using simulation methodology as the prime objective of the present study. A strain development curve for the soft clay was obtained as a result. Considering the effects of effective confining pressure (p') and radial cyclic stress ratio (τr), an explicit model of accumulative strain on soft clay under cyclic loading of the cross-river subway was established. The results showed that the accumulative axial strain (εd) was closely related to p' and τr. Under certain conditions, as p' and τr increased, the εd produced by the soil tended to decrease. Furthermore, through non-destructive testing based on nuclear magnetic resonance (NMR), pore distribution and pore size changes in soft clay during cyclic loading were analyzed. It was observed that under the action of the cross-river loading, the large internal soft clay pores were transformed into small pores, which manifested as a significant decrease in the number of large pores and an increase in the proportion of small pores. Lastly, the macroscopic dynamic soil characteristics observed during triaxial testing closely correlated with the microscopic pore size of the soil obtained in the NMR test, which indicated that using pore distribution and pore size changes to describe microscopic changes was a valid method.