Jeppesenegan9653
Cerebral amyloid angiopathy (CAA) most commonly presents with lobar intracerebral haemorrhage, though also with transient focal neurological episodes, cognitive impairment, as an incidental finding and rarely acutely or subacutely in patients developing an immune response to amyloid. Convexity subarachnoid haemorrhage, cortical superficial siderosis and lobar cerebral microbleeds are the other signature imaging features. The main implications of a diagnosis are the risk of intracerebral haemorrhage and frequent co-existence of antithrombotic indications. The risk of intracerebral haemorrhage varies by phenotype, being highest in patients with transient focal neurological episodes and lowest in patients with isolated microbleeds. There is only one relevant randomised controlled trial to CAA patients with antithrombotic indications RESTART showed that in patients presenting with intracerebral haemorrhage while taking antiplatelets, restarting treatment appeared to reduce recurrent intracerebral haemorrhage and improve outcomes. Observational and indirect data are reviewed relevant to other scenarios where there are antithrombotic indications. In patients with a microbleed-only phenotype, the risk of ischaemic stroke exceeds the risk of intracerebral haemorrhage at all cerebral microbleed burdens. In patients with atrial fibrillation (AF), left atrial appendage occlusion, where device closure excludes the left atrial appendage from the circulation, can be considered where the risk of anticoagulation seems prohibitive. Ongoing trials are testing the role of direct oral anticoagulant (DOACs) and left atrial appendage occlusion in patients with intracerebral haemorrhage/AF but in the interim, treatment decisions will need to be individualised and remain difficult.
ERRB2 (formerly HER2)-positive advanced breast cancer (ABC) remains typically incurable with optimal treatment undefined in later lines of therapy. The chimeric antibody margetuximab shares ERBB2 specificity with trastuzumab but incorporates an engineered Fc region to increase immune activation.
To compare the clinical efficacy of margetuximab vs trastuzumab, each with chemotherapy, in patients with pretreated ERBB2-positive ABC.
The SOPHIA phase 3 randomized open-label trial of margetuximab plus chemotherapy vs trastuzumab plus chemotherapy enrolled 536 patients from August 26, 2015, to October 10, 2018, at 166 sites in 17 countries. Eligible patients had disease progression on 2 or more prior anti-ERBB2 therapies and 1 to 3 lines of therapy for metastatic disease. Data were analyzed from February 2019 to October 2019.
Investigators selected chemotherapy before 11 randomization to margetuximab, 15 mg/kg, or trastuzumab, 6 mg/kg (loading dose, 8 mg/kg), each in 3-week cycles. Stratification factors we median OS was 21.6 months with margetuximab vs 19.8 months with trastuzumab (HR, 0.89; 95% CI, 0.69-1.13; P = .33; September 10, 2019), and investigator-assessed PFS showed 29% relative risk reduction favoring margetuximab (HR, 0.71; 95% CI, 0.58-0.86; P < .001; median, 5.7 vs 4.4 months; September 10, 2019). Margetuximab improved objective response rate over trastuzumab 22% vs 16% (P = .06; October 10, 2018), and 25% vs 14% (P < .001; September 10, 2019). Incidence of infusion-related reactions, mostly in cycle 1, was higher with margetuximab (35 [13.3%] vs 9 [3.4%]); otherwise, safety was comparable.
In this phase 3 randomized clinical trial, margetuximab plus chemotherapy had acceptable safety and a statistically significant improvement in PFS compared with trastuzumab plus chemotherapy in ERBB2-positive ABC after progression on 2 or more prior anti-ERBB2 therapies. Final OS analysis is expected in 2021.
ClinicalTrials.gov Identifier NCT02492711.
ClinicalTrials.gov Identifier NCT02492711.Population ageing is presented as one of the 'grand challenges' of the 21st century. Yet, policies designed to offset these challenges seem to be a jumbled, disjointed mix with no clear, overarching narrative. One of the successes of climate change science is the development of a clear, distinguishable framework to plan action adaptation, mitigation and resilience. This framework can be applied to designing better policy for ageing adapting to support people in need today; mitigating future challenges by ensuring that people and institutions 'age better'; and building resilience by developing both a longer-term perspective and policy learning framework.Advanced materials and chemo-specific designs at the nano/micrometer-scale have ensured revolutionary progress in next-generation clinically relevant technologies. For example, isolating a rare population of cells, like circulating tumor cells (CTCs) from the blood amongst billions of other blood cells, is one of the most complex scientific challenges in cancer diagnostics. The chemical tunability for achieving this degree of exceptional specificity for extra-cellular biomarker interactions demands the utility of advanced entities and multistep reactions both in solution and in the insoluble state. Thus, this review delineates the chemo-specific substrates, chemical methods, and structure-activity relationships (SARs) of chemical platforms used for isolation and enumeration of CTCs in advancing the relevance of liquid biopsy in cancer diagnostics and disease management. We highlight the synthesis of cell-specific, tumor biomarker-based, chemo-specific substrates utilizing functionalized linkers through chemistry-based conjugation strategies. The capacity of these nano/micro substrates to enhance the cell interaction specificity and efficiency with the targeted tumor cells is detailed. Furthermore, this review accounts for the importance of CTC capture and other downstream processes involving genotypic and phenotypic CTC analysis in real-time for the detection of the early onset of metastases progression and chemotherapy treatment response, and for monitoring progression free-survival (PFS), disease-free survival (DFS), and eventually overall survival (OS) in cancer patients.Correction for 'Hydrodynamic interactions in squirmer dumbbells active stress-induced alignment and locomotion' by Judit Clopés et al., Soft Matter, 2020, 16, 10676-10687, DOI .In this study, the assembled structures of rod-coil diblock copolymer and nanoparticle blends were studied via dissipative particle dynamics (DPD). Thin films were composed of soft confinement DPD fluid beads and the fluctuating film structure was maintained during the simulation process. Analysis of the position of nanoparticles was done in the smectic lamellar phase of the rod-coil polymer matrix, and density distributions of rods, coils, and nanoparticles were obtained as functions of the size of the nanoparticle and the DPD repulsion constant between the rod and the nanoparticle. The distribution of nanoparticles was explained by using the concept of translational entropy of nanoparticles, stretching energy of the polymer chain, relative repulsion enthalpy of nanoparticles to rods or coils, and the effect of the liquid crystalline rod.The main process of carbon dioxide (CO2) photoreduction is that excited electrons are transported to surface active sites to reduce adsorbed CO2 molecules. Obviously, electron transfer to the active site is one of the key steps in this process. However, current catalysts for CO2 adsorption, activation, and electron reduction occur in different locations, which greatly reduce the efficiency of photocatalysis. Herein, through a spontaneous chemical redox approach, the plasmonic photocatalysts of Au-BiOCl-OV with enhanced interfacial interaction were fabricated for visible light CO2 reduction through the simultaneous adsorption, activation and in situ reduction of CO2 without a sacrificial agent. By loading gold (Au) on the oxygen vacancy (OV), Au and BiOCl-OV formed a direct and tight interface contact, whose fine structure was confirmed by SEM, TEM, EPR and XPS, which not only effectively boosts the light utilization efficiency and the light carrier separation ability, but also can simultaneously adsorb, activate and in situ reduce carbon dioxide for highly efficient visible light photocatalysis. Thanks to the synergistic influence of Au and OV, Au-BiOCl-OV exhibits excellent photocatalytic performance without sacrificial agent and outstanding stability with a high CO and CH4 production yield, reaching 4.85 μmol g-1 h-1, which were 2.8 times higher than C-Au-BiOCl-OV (obtained by traditional NaBH4 reduction). This study proposes a new strategy for the production of high-performance collaborative catalysis in photocatalytic CO2 reduction.Although street artists have the know-how to blow bubbles over one meter in length, the bubble width is typically determined by the size of the hoop, or wand they use. In this article we explore a regime in which, by blowing gently downwards, we generate bubbles with radii up to ten times larger than the wand. We observe the big bubbles at lowest air speeds, analogous to the dripping mode observed in droplet formation. We also explore the impact of the surfactant chosen to stabilize the bubbles. We are able to create bubbles of comparable size using either Fairy liquid, a commercially available detergent often used by street artists, or sodium dodecyl sulfate (SDS) solutions. The bubbles obtained from Fairy liquid detach from the wand and are stable for several seconds, however those from SDS tend to burst just before detachment.Janus wettability membranes have received much attention because of their asymmetric surface wettability. On the basis of this distinctiveness from traditional symmetrical membranes, relevant scholars have been inspired to pursue many innovations utilizing such membranes. AZD4547 inhibitor Femtosecond laser microfabrication shows many advantages, such as precision, short time, and environmental friendliness, over traditional fabrication methods. Now this has been applied in structuring Janus membranes by researchers. This review covers recent advances in femtosecond laser-structured Janus membranes with asymmetric surface wettability. The background in femtosecond laser-structured Janus membranes is first discussed, focusing on the Janus wettability membrane and femtosecond laser microfabrication. Then the applications of Janus membranes are introduced, which are divided into unidirectional fluid transport, oil-water separation, fog harvesting, and seawater desalination. Finally, based on femtosecond laser-structured Janus membranes, some existing problems are pointed out and future perspectives proposed.Using self-consistent field calculations, we examine the effect of brush polydispersity on conformational transitions of single adsorption-active diblock copolymer chains embedded in inert polydisperse brushes. To represent the polydispersity, we adopt the continuous Schulz-Zimm chain length distributions, and three typical distributions are chosen such that a wide range of polydispersity is covered. A phase diagram of the diblock copolymer switches has been constructed showing that the first order phase transitions occupy a larger space in the case of polydisperse brushes. We further characterize these first order phase transitions by specifying their transition points, transition widths and transition barriers, where the latter two are particularly important as they determine the performance of the polymer switches. Our calculation indicates that polydispersity has different effect on the switching behavior depending on the lengths of both the active block and the inert block of the copolymer switch chain. In general, polydispersity improves the switching performance in the case of short active blocks, i.