Jensbydrake9819

Z Iurium Wiki

This work presents a significant step toward CUR's clinical application and provides a new strategy for effective and integrative treatment of tumor disease.Photoresponsive supramolecular hydrogels based on the host-guest interaction between cyclodextrin (CD) and azobenzene (Azo) are highly favored in "on-demand" biological applications. Nevertheless, most Azo/CD-based hydrogels are UV-responsive, exhibiting poor tissue penetrability and potential cytotoxicity; more importantly, the complete gel-sol transition under irradiation makes intelligent systems unstable. Here, we report a red-light-responsive semiconvertible hydrogel based on tetra-ortho-methoxy-substituted Azo (mAzo)- and CD-functionalized hyaluronic acid (HA). By integrating red-shifted-photoisomerized mAzo with HA, a biocompatible 625 nm-light-responsive polymeric guest with strengthened hydrogen bonding and weakened photoisomerization was synthesized. Upon alternating irradiation, mAzo-HA/CD-HA hydrogels obtained here exhibited reversible mechanical and structural dynamics, while avoiding complete gel-sol transition. This improved semiconvertibility remedies the lack of macroscopic resilience for dynamic system so as to endow supramolecular hydrogels with spatial-temporal mechanics, self-healing, and adhesion. Together with excellent cytocompatibility and manufacturability, these hydrogels show potential advantages in tissue engineering, especially for the regeneration of functional multi-tissue complex.Radiotherapy is widely applied for multiple malignant tumors ablation in the clinic. However, redundant doses of X-rays might destroy normal tissue in the periphery of tumor sites. Here, we developed an integrated nanosystem (Bac@BNP) composed of engineered bacteria (Bac) and Bi2S3 nanoparticles (BNPs) for sensitizing radiotherapy. Bac could target and colonize in tumor sites alternatively, which overexpressed cytolysin A (ClyA) protein to regulate the cell cycle from a radioresistant phase to a radiosensitive phase. Simultaneously, peptide-modified BNPs, as a radiosensitizer with a high-Z element, was released from the surface of Bac owing to the matrix metalloproteinase-2 (MMP-2) response in the tumor microenvironment. Under X-ray irradiation, BNPs could enhance the radiotherapy sensitivity by triggering the intracellular generation of reactive oxygen species (ROS), coupled with DNA damage. In this constructed nanosystem, the combination of Bac@BNP and X-ray irradiation led to significant suppression of breast carcinoma in murine models with reduced side effects.Silver nanowire (AgNW) networks have been explored as a promising technology for transparent electrodes due to their solution-processability, low-cost implementation, and excellent trade-off between sheet resistance and transparency. However, their large-scale implementation in applications such as solar cells, transparent heaters, and display applications has been hindered by their poor thermal, electrical, and chemical stability. In this work, we present reactive sputtering as a method for fast deposition of metal oxynitrides as an encapsulant layer on AgNWs. Because O2 cannot be used as a reactive gas in the presence of oxidation-sensitive materials such as Ag, N2 is used under moderate sputtering base pressures to leverage residual H2O on the sample and chamber to deposit Al, Ti, and Zr oxynitrides (AlOxNy, TiOxNy, and ZrOxNy) on Ag nanowires on glass and polymer substrates. All encapsulants improve AgNW networks' electrical, thermal, and chemical stability. In particular, AlOxNy-encapsulated networks present exceptional chemical stability (negligible increase in resistance over 7 days at 80% relative humidity and 80 °C) and transparency (96% for 20 nm films on AgNWs), while TiOxNy demonstrates exceptional thermal and electrical stability (stability up to over temperatures 100 °C more than that of bare AgNW networks, with a maximum areal power density of 1.72 W/cm2, and no resistance divergence at up to 20 V), and ZrOxNy presents intermediate properties in all metrics. In summary, a novel method of oxynitride deposition, leveraging moderate base pressure reactive sputtering, is demonstrated for AgNW encapsulant deposition, which is compatible with roll-to-roll processes that are operated at commercial scales, and this technique can be extended to arbitrary, vacuum-compatible substrates and device architectures.The lithium-sulfur (Li-S) batteries have attracted tremendous attention from both academia and industry for their high energy density and environmental benignity. However, the cell performance suffers from the passivation of the conductive matrix caused by uncontrolled lithium sulfide (Li2S) deposition. Therefore, regulation of Li2S deposition is essential to advanced Li-S batteries. In this work, the role of temperature in regulating Li2S deposition is comprehensively investigated. At room temperature (25 °C), Li2S exhibits a two-dimensional (2D) growth mode. The dense and insulating Li2S film covers the conductive surface rapidly, inhibiting the charge transfer for subsequent polysulfide reduction. Consequently, the severe passivation of the conductive surface degrades the cell performance. In contrast, three-dimensional (3D) Li2S is formed at a high temperature (60 °C) because of a faster Ostwald ripening rate at an elevated temperature. The passivation of the conductive matrix is mitigated effectively, and the cell performance is enhanced significantly, thanks to the formation of 3D Li2S. Ostwald ripening is also valid for Li-S cells under rigorous conditions. The cell working at 60 °C achieves a high specific capacity of 1228 mA h g-1 under the conditions of high S loading and a lean electrolyte (S loading = 3.6 mg cm-2, electrolyte/sulfur ratio = 3 μL mg-1), which is substantially higher than that at 25 °C. This work enriches the intrinsic understanding of Li2S deposition in Li-S batteries and provides facile strategies for improving the cell performance under practical conditions.A potential load-bearing bone substitution and repair material, that is, carbon fiber (CF)-reinforced magnesium-doped hydroxyapatite (CF/Mg-HAs) composites with excellent mechanical performance and tailored biological properties, was constructed via the hydrothermal method and spark plasma sintering. A high-resolution transmission electron microscopy (TEM) was employed to characterize the nanostructure of magnesium-doped hydroxyapatite (Mg-HA). TEM images showed that the doping of Mg-induced distortions and dislocations in the hydroxyapatite lattice, resulting in decreased crystallinity and enhanced dissolution. Compressive strengths of 10% magnesium-doped hydroxyapatite (1Mg-HAs) and CF-reinforced 1Mg-HAs (CF/1Mg-HAs) were within the range of that of cortical bone. Compared with 1Mg-HAs, the fracture toughness of CF/1Mg-HAs increased by approximately 38%. The bioactivity, biocompatibility, and osteogenic induction properties of Mg-HAs and CF/Mg-HAs composites were evaluated in vitro using simulated body fluias remarkably higher than that of HAs (21.6% ± 3.9%). 1Mg-HAs and CF/1Mg-HAs tailored an ideal effect of new bone information and implant osseointegration. The excellent mechanical performance and tailored biological properties of CF/Mg-HAs were attributed to nano Mg-doped HA, CF reinforcing, refined microstructure, and controlled composition.Bilayer hydrogels are attracting tremendous attention for their capability to integrate several different functions on the two sides of the gel, that is, imparting the gel with Janus characteristics, which is highly desired in many engineering and biomedical applications including soft actuators, hydrogel patches, and wearable electronics. However, the preparation process of the bilayer materials usually involves several complicated steps and is time-consuming, while the interfacial bonding is another main concern. Here, a simple and versatile method is proposed to obtain bilayer hydrogels within just one step based on the method of introducing viscosity contrast of the precursors for different layers. The bilayer structure can be well maintained during the whole preparation process with a constrained interfacial molecular exchange to ensure the strong bonding strength. The key requirements for forming distinct bilayer structures in situ are studied and discussed in detail. Bilayer hydrogels with different chemical designs are prepared via this strategy to tailor the good distribution of desired functions for soft actuators, wound healing patches, and wearable electronics. We believe that the strategy illustrated here will provide new insights into the preparation and application of bilayer materials.A photonic lattice is an efficient platform for optically exploring quantum phenomena. However, its fabrication requires high costs and complex procedures when conventional materials, such as silicon or metals, are used. Here, we demonstrate a simple and cost-effective fabrication method for a reconfigurable chiral photonic lattice of the helical nanofilament (HNF) liquid crystal (LC) phase and diffraction grating showing wavelength-dependent diffraction with a rotated polarization state. Furthermore, the UV-exposed areas of the HNF film having chiral characteristics act as optical building blocks that induce resonant intensity modulation in the reflectance and transmittance modes and the optical rotation of the linear polarization. LF3 cost Our photonic lattice of the HNF can be an efficient platform for a chirality-embedded photonic lattice at a low cost.Electrocatalysts with dramatically enhanced water splitting efficiency, derived from controlled structures, phase transitions, functional activation, etc., have been developed recently. Herein, we report an in situ observation of graphene-based self-healing, in which this functional activation is induced by a redox reaction. Specifically, graphene on stainless steel (SUS) switches between graphene (C-C) and graphene oxide (C-O) coordination via an electrical redox reaction to activate water splitting. A heterostructure comprising Pt-NiO thin films on single-layer graphene directly grown on a SUS substrate (Pt-NiO/Gr-SUS) was also synthesized by electrodeposition. Pt-NiO/Gr-SUS exhibited water splitting activity with low Pt loading ( less then 1 wt %). The findings provide valuable insight for designing robust electrodes based on reversible redox-induced self-healable graphene to develop more efficient catalysts.Electrochemical CO2 reduction can convert waste emissions into dense liquid fuels compatible with existing energy infrastructure. High-rate electrocatalytic conversion of CO2 to ethanol has been achieved in membrane electrode assembly (MEA) electrolyzers; however, ethanol produced at the cathode is transported, via electroosmotic drag and diffusion, to the anode, where it is diluted and may be oxidized. The ethanol concentrations that result on both the cathodic and anodic sides are too low to justify the energetic and financial cost of downstream separation. Here, we present a porous catalyst adlayer that facilitates the evaporation of ethanol into the cathode gas stream and reduces the water transport, leading to a recoverable stream of concentrated ethanol. The adlayer is comprised of ethylcellulose-bonded carbon nanoparticles and forms a porous, electrically conductive network on the surface of the copper catalyst that slows the transport of water to the gas channel. We achieve the direct production of an ethanol stream of 12.

Autoři článku: Jensbydrake9819 (Owens Ludvigsen)