Jenningsfoster7522

Z Iurium Wiki

Experimental results verified that the QD-PEG-P(ED-DLA-DMA)LG showed enhanced internalization, rapid endo/lysosomal escape, and supplied legible real-time imaging for lung carcinoma cells. Furthermore, pH-triggered charge-convertible ability enabled the QD-PEG-P(ED-DLA-DMA)LG-CC to effectively kill cancer cells better than did the control groups. Hence, constructing smart nanocomposites by facile ligand-exchange strategy is beneficial to QD-based nanocarrier for tumor-targeting cancer therapy.The numerous advantages of hydrogel make it possible to apply as dressing. However, it is challenging in designing hydrogels with desired antibacterial activity and enhanced mechanical properties at the same time. Herein, a graphene oxide/rose bengal/polyvinyl alcohol hybrid hydrogel (β-GO/RB/PVA HD) is prepared by freezing and thawing a mixed polyvinyl alcohol (PVA) solution of rose bengal (RB) immobilized with chitosan microspheres (CM) and a modified graphene oxide network (β-GO). The mechanical properties and light-triggered antibacterial activity of hydrogel are systematically evaluated. The β-GO inorganic network interpenetrate into the PVA porous structure, which significantly improves the mechanical properties of hydrogel. The hyperthermia generated by β-GO under 808 nm light irradiation combined with reactive oxygen species (ROS) produced by RB under 550 nm light irradiation give rise to excellent antibacterial activity requiring irradiation for only 10 min as demonstrated by our experiments conducted in vitro and in vivo. Meanwhile, β-GO/RB/PVA HD exhibits outstanding biocompatibility and water-absorbing capacity. More importantly, the hybrid hydrogel can significantly accelerate bacteria-accompanied wound healing. The results demonstrated that the hybrid hydrogel could be a promising wound dressing for preventing bacterial infection.The construction of metal-oxide heterojunction architecture has greatly widened applications in the fields of optoelectronics, energy conversions and electrochemical sensors. In this study, olive-like hetero-structured MnO-Mn3O4 microparticles wrapped by reduced graphene oxide (MnO-Mn3O4@rGO) were synthesized through a facile solvothermal-calcination treatment. The morphology and structure of MnO-Mn3O4@rGO were characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction. The as-synthesized MnO-Mn3O4@rGO exhibited prominent catalyzing effect on the electroreduction of H2O2, due to the combination of good electrical conductivity of rGO and the synergistic effect of MnO and Mn3O4. The MnO-Mn3O4@rGO modified glassy carbon electrode provided a wide linear response from 0.004 to 17 mM, a low detection limit of 0.1 μM, and high sensitivity of 274.15 μA mM-1 cm-2. The proposed sensor displayed noticeable selectivity and long-term stability. In addition, the biosensor has been successfully applied for detecting H2O2 in tomato sauce with good recovery, revealing its promising potential applications for practical electrochemical sensors.The success of artificial vascular graft in the host to obtain functional tissue regeneration and remodeling is a great challenge in the field of small diameter tissue engineering blood vessels. In our previous work, poly(ε-caprolactone) (PCL)/fibrin vascular grafts were fabricated by electrospinning. It was proved that the PCL/fibrin vascular graft was a suitable small diameter tissue engineering vascular scaffold with good biomechanical properties and cell compatibility. H-Cys(Trt)-OH purchase Here we mainly examined the performance of PCL/fibrin vascular graft in vivo. The graft showed randomly arranged nanofiber structure, excellent mechanical strength, higher compliance and degradation properties. At 9 months after implantation in the rat abdominal aorta, the graft induced the regeneration of neoarteries, and promoted ECM deposition and rapid endothelialization. More importantly, the PCL/fibrin vascular graft showed more microvessels density and fewer calcification areas at 3 months, which was beneficial to improve cell infiltration and proliferation. Moreover, the ratio of M2/M1macrophage in PCL/fibrin graft had a higher expression level and the secretion amount of pro-inflammatory cytokines started to increase, and then decreased to similar to the native artery. Thus, the electrospun PCL/fibrin tubular vascular graft had great potential to become a new type of artificial blood vessel scaffold that can be implanted in vivo for long term.Functionalized scaffolds hold promise for stem cell therapy by controlling stem cell fate and differentiation potential. Here, we have examined the potential of a 2-dimensional (2D) scaffold to stimulate bone regeneration. Solubilized extracellular matrix (ECM) from human bone tissue contains native extracellular cues for human skeletal cells that facilitate osteogenic differentiation. However, human bone ECM displays limited mechanical strength and degradation stability under physiological conditions, necessitating modification of the physical properties of ECM before it can be considered for tissue engineering applications. To increase the mechanical stability of ECM, we explored the potential of synthetic Laponite® (LAP) clay as a counter material to prepare a 2D scaffold using Layer-by-Layer (LbL) self-assembly. The LAP and ECM multilayer nanofilms (ECM/LAP film) were successfully generated through electrostatic and protein-clay interactions. Furthermore, to enhance the mechanical properties of the ECM/LAP film, application of a NaCl solution wash step, instead of deionized water following LAP deposition resulted in the generation of stable, multi-stacked LAP layers which displayed enhanced mechanical properties able to sustain human skeletal progenitor cell growth. The ECM/LAP films were not cytotoxic and, critically, showed enhanced osteogenic differentiation potential as a consequence of the synergistic effects of ECM and LAP. In summary, we demonstrate the fabrication of a novel ECM/LAP nanofilm layer material with potential application in hard tissue engineering.

Autoři článku: Jenningsfoster7522 (Camp McGregor)