Jenkinsdriscoll1014

Z Iurium Wiki

Recurrent infection-inflammation cycles in cystic fibrosis (CF) patients generate a highly oxidative environment, leading to progressive destruction of the airway epithelia. The identification of novel modifier genes involved in oxidative stress susceptibility in the CF airways might contribute to devise new therapeutic approaches. We performed an unbiased genome-wide RNAi screen using a randomized siRNA library to identify oxidative stress modulators in CF airway epithelial cells. We monitored changes in cell viability after a lethal dose of hydrogen peroxide. Local similarity and protein-protein interaction network analyses uncovered siRNA target genes/pathways involved in oxidative stress. Further mining against public drug databases allowed identifying and validating commercially available drugs conferring oxidative stress resistance. Accordingly, a catalog of 167 siRNAs able to confer oxidative stress resistance in CF submucosal gland cells targeted 444 host genes and multiple circuitries involved in oxidative stress. The most significant processes were related to alternative splicing and cell communication, motility, and remodeling (impacting cilia structure/function, and cell guidance complexes). Other relevant pathways included DNA repair and PI3K/AKT/mTOR signaling. The mTOR inhibitor everolimus, the α1-adrenergic receptor antagonist doxazosin, and the Syk inhibitor fostamatinib significantly increased the viability of CF submucosal gland cells under strong oxidative stress pressure. Thus, novel therapeutic strategies to preserve airway cell integrity from the harsh oxidative milieu of CF airways could stem from a deep understanding of the complex consequences of oxidative stress at the molecular level, followed by a rational repurposing of existing "protective" drugs. This approach could also prove useful to other respiratory pathologies.Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease affecting more than 1% of the population over 65 years old. The etiology of the disease is unknown and there are only symptomatic managements available with no known disease-modifying treatment. Aging, genes, and environmental factors contribute to PD development and key players involved in the pathophysiology of the disease include oxidative stress, mitochondrial dysfunction, autophagic-lysosomal imbalance, and neuroinflammation. Recent epidemiology studies have shown that type-2 diabetes (T2DM) not only increased the risk for PD, but also is associated with PD clinical severity. A higher rate of insulin resistance has been reported in PD patients and is suggested to be a pathologic driver in this disease. Oral diabetic drugs including sodium-glucose cotransporter 2 (SGLT2) inhibitors, glucagon-like peptide-1 (GLP-1) receptor agonists, and dipeptidyl peptidase-4 (DPP-4) inhibitors have been shown to provide neuroprotective effects in both PD patients and experimental models; additionally, antidiabetic drugs have been demonstrated to lower incidence rates of PD in DM patients. Among these, the most recently developed drugs, SGLT2 inhibitors may provide neuroprotective effects through improving mitochondrial function and antioxidative effects. In this article, we will discuss the involvement of mitochondrial-related oxidative stress in the development of PD and potential benefits provided by antidiabetic agents especially focusing on sglt2 inhibitors.Traumatic optic neuropathy (TON) may cause severe visual loss following direct or indirect head trauma which may result in optic nerve injuries and therefore contribute to the subsequent loss of retinal ganglion cells by inflammatory mediators and reactive oxygen species (ROS). Granulocyte colony-stimulating factor (G-CSF) provides the anti-inflammatory and anti-oxidative actions but has a short half-life and also induces leukocytosis upon typical systemic administration. The purpose of the present study was to investigate the relationship between the anti-oxidative response and neuroprotective effects of long-acting pegylated human G-CSF (PEG-G-CSF) in a rat model of optic nerve crush (ONC). Adult male Wistar rats (150-180 g) were chosen to have a sham operation in one eye and have ONC in the other. PEG-G-CSF or phosphate-buffered saline (PBS control) was immediately administered after ONC by intravitreal injection (IVI). We found the IVI of PEG-G-CSF does not induce systemic leukocytosis, but increases survival of RGCs and preserves the visual function after ONC. TUNEL assays showed fewer apoptotic cells in the retina in the PEG-G-CSF-treated eyes. The number of sorely ED1-positive cells was attenuated at the lesion site in the PEG-G-CSF-treated eyes. Immunoblotting showed up-regulation of p-Akt1, Nrf2, Sirt3, and HO-1 in the ON of the PEG-G-CSF-treated eyes. Our results demonstrated that one IVI of long-acting PEG-G-CSF is neuroprotective in the rONC. PEG-G-CSF activates the p-Akt1/Nrf2/Sirt3 and the p-Akt1/Nrf2/HO-1 axes to provide the antioxidative action and further attenuated RGC apoptosis and neuroinflammation. This provides crucial preclinical information for the development of alternative therapy with IVI of PEG-G-CSF in TON.As a small-molecule reductant substance, hydrogen gas has an obvious antioxidant function. It can selectively neutralize hydroxyl radicals (•OH) and peroxynitrite (ONOO•) in cells, reducing oxidative stress damage. The purpose of this study was to investigate the effect of hydrogen gas (3%) on early chronic liver injury (CLI) induced by CCl4 and to preliminarily explore the protective mechanism of hydrogen gas on hepatocytes by observing the expression of uncoupling protein 2 (UCP2) in liver tissue. Here, 32 rats were divided into four groups the control group, CCl4 group, H2 (hydrogen gas) group, and CCl4 + H2 group. The effect of hydrogen gas on early CLI was observed by serological tests, ELISA, hematoxylin and eosin staining, and oil red O staining. Immunohistochemical staining and Western blotting were used to observe the expression of UCP2 in liver tissues. UBCS039 We found that CCl4 can induce significant steatosis in hepatocytes. When the hydrogen gas was inhaled, hepatocyte steatosis was reduced, and the UCP2 expression level in liver tissue was increased. These results suggest that hydrogen gas might upregulate UCP2 expression levels, reduce the generation of intracellular oxygen free radicals, affect lipid metabolism in liver cells, and play a protective role in liver cells.Although chemotherapeutics are used to treat infections in farmed fish, knowledge on how they alter host physiology is limited. Here, we elucidated the physiological consequences of repeated exposure to the potent oxidative chemotherapeutic peracetic acid (PAA) in Atlantic salmon (Salmo salar) smolts. Fish were exposed to the oxidant for 15 (short exposure) or 30 (long exposure) minutes every 15 days over 45 days. Unexposed fish served as the control. Thereafter, the ability of the remaining fish to handle a secondary stressor was investigated. Periodic chemotherapeutic exposure did not affect production performance, though survival was lower in the PAA-treated groups than in the control. Increased ventilation, erratic swimming, and a loss of balance were common behavioural manifestations during the oxidant exposure. The plasma reactive oxygen species levels increased in the PAA-treated groups, particularly after the third exposure, suggesting an alteration in the systemic oxidative stress status. Plasma indi cell hypertrophy after the second and third exposures, although the skin morphological parameters remained unaltered. Lastly, repeated oxidant exposures did not impede the ability of the fish to mount a response to a secondary stressor. This study provides insights into how a chemical oxidative stressor alters salmon physiology at both the systemic and mucosal levels. This knowledge will be pivotal in developing an evidence-driven approach to the use of oxidative therapeutics in fish, with some of the molecules and pathways identified as potential biomarkers and targets for assessing the physiological cost of these treatments.This study was conducted to evaluate the anti-amnesic effect of the aqueous extract of powdered green tea (matcha) (EM) in particulate matter (PM)2.5-induced systemic inflammation in BALB/c mice. EM ameliorated spatial learning and memory function, short-term memory function, and long-term learning and memory function in PM2.5-induced mice. EM protected against antioxidant deficit in pulmonary, dermal, and cerebral tissues. In addition, EM improved the cholinergic system through the regulation of acetylcholine (ACh) levels and acetylcholinesterase (AChE) activity in brain tissue, and it protected mitochondrial dysfunction by regulating the production of reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and ATP contents in brain tissue. EM attenuated systemic inflammation and apoptotic signaling in pulmonary, dermal, olfactory bulb, and hippocampal tissues. Moreover, EM suppressed neuronal cytotoxicity and cholinergic dysfunction in hippocampal tissue. This study suggests that EM might be a potential substance to improve PM2.5-induced cognitive dysfunction via the regulation of systemic inflammation.With the implementation of modern scientific protocols, the average human lifespan has significantly improved, but age-related problems remain a challenge. With the advent of ageing, there are alterations in gut microbiota and gut barrier functions, weak immune responses, increased oxidative stress, and other age-related disorders. This review has highlighted and discussed the current understanding on the significance of gut microbiota dysbiosis and ageing and its inherent effects against age-related oxidative stress as well as on the gut health and gut-brain axis. Further, we have discussed the key mechanism of action of Lactobacillus strains in the longevity of life, alleviating gut dysbiosis, and improving oxidative stress and inflammation to provide an outline of the role of Lactobacillus strains in restoration of gut microbiota dysbiosis and alleviating certain conditions during ageing. Microbiota-targeted interventions of some characterized strains of probiotic Lactobacillus for the restoration of gut microbial community are considered as a potential approach to improve several neurological conditions. However, very limited human studies are available on this alarmed issue and recommend further studies to identify the unique Lactobacillus strains with potential anti-ageing properties and to discover its novel core microbiome-association, which will help to increase the therapeutic potential of probiotic Lactobacillus strains to ageing.Aging is inevitable, but the inherently and genetically programmed aging process is markedly influenced by environmental factors. All organisms are constantly exposed to various stresses, either exogenous or endogenous, throughout their lives, and the quality and quantity of the stresses generate diverse impacts on the organismal aging process. In the current oxygenic atmosphere on earth, oxidative stress caused by reactive oxygen species is one of the most common and critical environmental factors for life. The Kelch-like ECH-associated protein 1-NFE2-related factor 2 (KEAP1-NRF2) system is a critical defense mechanism of cells and organisms in response to redox perturbations. In the presence of oxidative and electrophilic insults, the thiol moieties of cysteine in KEAP1 are modified, and consequently NRF2 activates its target genes for detoxification and cytoprotection. A number of studies have clarified the contributions of the KEAP1-NRF2 system to the prevention and attenuation of physiological aging and aging-related diseases.

Autoři článku: Jenkinsdriscoll1014 (Damsgaard Moesgaard)