Jantzenwelsh8540
Simulation results indicate the robustness and effectiveness for the proposed algorithm in independent, coherent, and mixed multipath environments and low signal-to-noise ratio (SNR) conditions.A new breast imaging system capable of obtaining ultrasound and microwave scattered-field measurements with minimal or no movement of the breast between measurements has recently been reported. In this work, we describe the methodology that has been developed to generate prior information about the internal structures of the breast based on ultrasound data measured with the dual-mode system. This prior information, estimating both the geometry and complex-valued permittivity of tissues within the breast, is incorporated into the microwave inversion algorithm as a means of enhancing image quality. Several techniques to map reconstructed ultrasound speed to complex-valued relative permittivity are investigated. Quantitative images of two simplified dual-mode breast phantoms obtained using experimental data and the various forms of prior information are presented. Though preliminary, the results presented herein provide an understanding of the impacts of different forms of prior information on dual-mode reconstructions of the breast and can be used to inform future work on the subject.Along with the continuous revolution of energy production and energy consumption structures, the information data of smart grids have exploded, and effective solutions are urgently needed to solve the problem of power devices resource scheduling and energy efficiency optimization. In this paper, we propose a fifth generation (5G) and satellite converged network architecture for power transmission and distribution scenarios, where power transmission and distribution devices (PDs) can choose to forward power data to a cloud server data center via ground networks or space-based networks for power grid regulation and control. We propose a Joint Device Association and Power Control Online Optimization (JDAPCOO) algorithm to maximize the long-term system energy efficiency while guaranteeing the minimum transmission rate requirement of PDs. Since the formulated issue is a mixed integer nonconvex optimization problem with high complexity, we decompose the original problem into two subproblems, i.e., device association and power control, which are solved using a genetic algorithm and improved simulated annealing algorithm, respectively. Numerical simulation results show that when the number of PDs is 50, the proposed algorithm can improve the system energy efficiency by 105%, 545.05% and 835.26%, respectively, compared with the equal power allocation algorithm, random power allocation algorithm and random device association algorithm.(1) Background Incontinence and its complications pose great difficulties in the care of the disabled. Currently, invasive incontinence monitoring methods are too invasive, expensive, and bulky to be widely used. Compared with previous methods, bowel sound monitoring is the most commonly used non-invasive monitoring method for intestinal diseases and may even provide clinical support for doctors. (2) Methods This paper proposes a method based on the features of bowel sound signals, which uses a BP classification neural network to predict bowel defecation and realizes a non-invasive collection of physiological signals. Firstly, according to the physiological function of human defecation, bowel sound signals were selected for monitoring and analysis before defecation, and a portable non-invasive bowel sound collection system was built. Then, the detector algorithm based on iterative kurtosis and the signal processing method based on Kalman filter was used to process the signal to remove the aliasing noise in the bowel sound signal, and feature extraction was carried out in the time domain, frequency domain, and time-frequency domain. Finally, BP neural network was selected to build a classification training method for the features of bowel sound signals. (3) Results Experimental results based on real data sets show that the proposed method can converge to a stable state and achieve a prediction accuracy of 88.71% in 232 records, which is better than other classification methods. (4) Conclusions The result indicates that the proposed method could provide a high-precision defecation prediction result for patients with fecal incontinence, so as to prepare for defecation in advance.Both as an aid for less experienced clinicians and to enhance objectivity and sharp clinical skills in professionals, quantitative technologies currently bring the equine lameness diagnostic closer to evidence-based veterinary medicine. The present paper describes an original, inertial sensor-based wireless device system, the Lameness Detector 0.1, used in ten horses with different lameness degrees in one fore- or hind-leg. selleck inhibitor By recording the impulses on three axes of the incorporated accelerometer in each leg of the assessed horse, and then processing the data using custom-designed software, the device proved its usefulness in lameness identification and severity scoring. Mean impulse values on the horizontal axis calculated for five consecutive steps above 85, regardless of the leg, indicated the slightest subjectively recognizable lameness, increasing to 130 in severe gait impairment. The range recorded on the same axis (between 61.2 and 67.4) in the sound legs allowed a safe cut-off value of 80 impulses for diagnosing a painful limb. The significance of various comparisons and several correlations highlighted the potential of this simple, affordable, and easy-to-use lameness detector device for further standardization as an aid for veterinarians in diagnosing lameness in horses.Image denoising is still a challenging issue in many computer vision subdomains. Recent studies have shown that significant improvements are possible in a supervised setting. However, a few challenges, such as spatial fidelity and cartoon-like smoothing, remain unresolved or decisively overlooked. Our study proposes a simple yet efficient architecture for the denoising problem that addresses the aforementioned issues. The proposed architecture revisits the concept of modular concatenation instead of long and deeper cascaded connections, to recover a cleaner approximation of the given image. We find that different modules can capture versatile representations, and a concatenated representation creates a richer subspace for low-level image restoration. The proposed architecture's number of parameters remains smaller than in most of the previous networks and still achieves significant improvements over the current state-of-the-art networks.FAGV is a kind of heavy equipment in the storage environment. Its path needs to be simple and smooth and should be able to avoid sudden obstacles in the process of driving. According to the environmental characteristics of intelligent storage and the task requirements of FAGV, this paper proposed a hybrid dynamic path planning algorithm for FAGV based on improved A* and improved DWA. The improved A* algorithm can plan the global optimal path more suitable for FAGV. The improved evaluation function of DWA can ensure that the local path of FAGV is closer to the global path. DWA combines the rolling window method for local path planning to avoid sudden unknown static and dynamic obstacles. In addition, this paper verifies the effectiveness of the algorithm through simulation. The simulation results show that the algorithm can avoid obstacles dynamically without being far away from the global optimal path.The vibration comfort evaluation is a control standard other than strength and deflection, but the general comfort evaluation method only considers the response of the mid-span position and does not consider the difference in the vibration response of different positions at the same time. It is crucial to study how pedestrians actually feel when they walk on footbridges. The computer vision-based vibration comfort evaluation method is a novel method with advantages, such as noncontact and long-distance. In this study, a computer vision-based method was used to evaluate the global vibration comfort of footbridges under human-induced excitation. The improved Lucas-Kanade optical flow method is used for multitarget displacement identification of footbridges. Additionally, the YOLOv5 algorithm for pedestrian detection is used to obtain the position information of pedestrians on the footbridges. Then, according to the pedestrian position information, the structural responses of different pedestrian positions corresponding to time periods are extracted from the displacement responses of each point, and they are combined to obtain the structural global displacement. The global acceleration can be obtained by calculating the global displacement. The rms value can be calculated based on the global acceleration and compared with the standard for comfort evaluation. The global comfort evaluation method is validated by pedestrian walking experiments with different frequencies on a laboratory footbridge. The experimental results show that the computer vision-based global comfort evaluation method for footbridges is feasible and is a more specific and real-time comfort evaluation method.Distributed power generation, micro-grids, and networks working in islanding mode have strong deviations in voltage quantities. These deviations can be divided into amplitude and frequency. Amplitude deviations are well-known and studied, as they are common in small and big grids. However, deviations on the ac mains frequency have not been widely studied. The literature shows control schemes capable of bearing these variations, but no systematic analysis has been performed to ensure stability. As the majority of power converters are designed for big grids, their analysis and design neglect frequency disturbances, therefore those devices allow a very small frequency operating window. For instance, in power converters that need to be synchronized to the grid, the standard deviation does not go beyond 0.5 Hz, and for grid-tied inverters it does not go beyond 1 Hz, whereas variations of around 8 Hz can be expected in micro-grids. This work presents a comprehensive analysis of the control system's stability, where two different control schemes for a back-to-back static converter topology are implemented and studied under a wide variable grid frequency. Because the behavior of power converters is nonlinear and coupled, dynamic and static decouplers are usually introduced in the controller, being a key element on the scheme according to the findings. The results show that using just a static decoupler does not guarantee stability under frequency variations; meanwhile, when a dynamic decoupler is used, the operating window can be greatly extended. The procedure shown in this paper can also be extended to other control algorithms, making it possible to carefully choose the control system for a variable frequency condition. Simulated and experimental results confirm the theoretical approach.Femtosecond laser filamentation is a unique nonlinear optical phenomenon when high-power ultrafast laser propagation in all transparent optical media. During filamentation in the atmosphere, the ultrastrong field of 1013-1014 W/cm2 with a large distance ranging from meter to kilometers can effectively ionize, break, and excite the molecules and fragments, resulting in characteristic fingerprint emissions, which provide a great opportunity for investigating strong-field molecules interaction in complicated environments, especially remote sensing. Additionally, the ultrastrong intensity inside the filament can damage almost all the detectors and ignite various intricate higher order nonlinear optical effects. These extreme physical conditions and complicated phenomena make the sensing and controlling of filamentation challenging. This paper mainly focuses on recent research advances in sensing with femtosecond laser filamentation, including fundamental physics, sensing and manipulating methods, typical filament-based sensing techniques and application scenarios, opportunities, and challenges toward the filament-based remote sensing under different complicated conditions.