Jansenegan4767

Z Iurium Wiki

Inclusive fitness theory predicts that individuals can increase their indirect fitness by grouping with kin. However, kin grouping also increases competition between kin, which potentially outweighs its benefits. The level of kin competition is contingent on environmental conditions and thus highly variable. selleck chemicals llc Hence, individuals should benefit from plastically adjusting kin discrimination according to the expected level of kin competition. Here, we investigate whether perceived high competition affects juvenile kin-shoaling preferences in the cichlid Pelvicachromis taeniatus. Juveniles were given the choice between two shoals consisting of either kin or nonkin. Levels of perceived competition were manipulated through food limitation in the face of the differential energy expenditure of differently sized fish. The preference to shoal with kin decreased with increasing levels of perceived competition; small food-deprived individuals avoided kin. Shoaling with kin under strong competition may reduce individual indirect fitness. Hence, individuals can likely improve their inclusive fitness by plastically adjusting their kin-grouping preferences.Blood oxygen-carrying capacity is one of the important determinants of the amount of oxygen supplied to the tissue per unit time and plays a key role in oxidative metabolism. In wild vertebrates, blood oxygen-carrying capacity is most commonly measured with the total blood hemoglobin concentration (Hb) and hematocrit (Hct), which is the volume percentage of red blood cells in blood. Here, I used published estimates of avian Hb and Hct (nearly 1,000 estimates from 300 species) to examine macroevolutionary patterns in the oxygen-carrying capacity of blood in birds. Phylogenetically informed comparative analysis indicated that blood oxygen-carrying capacity was primarily determined by species distribution (latitude and elevation) and morphological constraints (body mass). I found little support for the effect of life-history components on blood oxygen-carrying capacity except for a positive association of Hct with clutch size. Hb was also positively associated with diving behavior, but I found no effect of migratoriness on either Hb or Hct. Fluctuating selection was identified as the major force shaping the evolution of blood oxygen-carrying capacity. The results offer novel insights into the evolution of Hb and Hct in birds, and they provide a general, phylogenetically robust support for some long-standing hypotheses in avian ecophysiology.Variation in species richness across environmental gradients results from a combination of historical nonequilibrium processes (time, speciation, extinction) and present-day differences in environmental carrying capacities (i.e., ecological limits affected by species interactions and the abundance and diversity of resources). In a study of bird richness along the subtropical east Himalayan elevational gradient, we test the prediction that species richness patterns are consistent with ecological limits using data on morphology, phylogeny, elevational distribution, and arthropod resources. Species richness peaks at midelevations. Occupied morphological volume is roughly constant from low elevations to midelevations, implying that more species are packed into the same space at midelevations compared with low elevations. However, variance in beak length and differences in beak length between close relatives decline with elevation, which is a consequence of the addition of many small insectivores at midelevations. These patterns are predicted from resource distributions arthropod size diversity declines from low elevations to midelevations, largely because many more small insects are present at midelevations. Weak correlations of species mean morphological traits with elevation also match predictions based on resources and habitats. Elevational transects in the tropical Andes, New Guinea, and Tanzania similarly show declines in mean arthropod size and mean beak length and, in these cases, likely contribute to declining numbers of insectivorous bird species richness along these gradients. The results imply that conditions for ecological limits are met, although historical nonequilibrium processes are likely to also contribute to the pattern of species richness.Is speciation generally a "special time" in morphological evolution, or are lineage-splitting events just "more of the same" where the end product happens to be two separate lineages? Data on evolutionary dynamics during anagenetic and cladogenetic events among closely related lineages within a clade are rare, but the fossil record of the bryozoan genus Metrarabdotos is considered a textbook example of a clade where speciation causes rapid evolutionary change against a backdrop of morphological stasis within lineages. Here, we point to some methodological and measurement theoretical issues in the original work on Metrarabdotos. We then reanalyze a subset of the original data that can be meaningfully investigated using quantitative statistical approaches similar to those used in the original studies. We consistently fail to find variation in the evolutionary process during within-lineage evolution compared with cladogenetic events the rates of evolution, the strength of selection, and the directions traveled in multivariate morphospace are not different when comparing evolution within lineages and at speciation events in Metrarabdotos, and genetic drift cannot be excluded as a sufficient explanation for the morphological differentiation within lineages and during speciation. Although widely considered the best example of a punctuated mode of evolution, morphological divergence and speciation are not linked in Metrarabdotos.Emigration is a fundamental process affecting species' local, regional, and large-scale dynamics. The paradigmatic view in ecology is that emigration is density independent (DIE) or positive density dependent (+DDE). However, alternative forms are biologically plausible, including negative (-DDE), U-shaped (uDDE), and hump-shaped (hDDE) forms. We reviewed the empirical literature to assess the frequency of different forms of density-dependent emigration and whether the form depended on methodology. We also developed a reaction-diffusion model to illustrate how different forms of DDE can affect patch-level population persistence. We found 145 studies, the majority representing DIE (30%) and +DDE (36%). However, we also regularly found -DDE (25%) and evidence for nonlinear DDE (9%), including one case of uDDE and two cases of hDDE. Nonlinear DDE detection is likely hindered by the use of few density levels and small density ranges. Based on our models, DIE and +DDE promoted stable and persistent populations. uDDE and -DDE generated an Allee effect that decreases minimum patch size. Last, -DDE and hDDE models yielded bistability that allows the establishment of populations at lower densities. We conclude that the emigration process can be a diverse function of density in nature and that alternative DDE forms can have important consequences for population dynamics.In animals, bright colors often evolve to mimic other species when a resemblance is selectively favored. Understanding the proximate mechanisms underlying such color mimicry can give insights into how mimicry evolves-for example, whether color convergence evolves from a shared set of mechanisms or through the evolution of novel color production mechanisms. We studied color production mechanisms in poison frogs (Dendrobatidae), focusing on the mimicry complex of Ranitomeya imitator. Using reflectance spectrometry, skin pigment analysis, electron microscopy, and color modeling, we found that the bright colors of these frogs, both within and outside the mimicry complex, are largely structural and produced by iridophores but that color production depends crucially on interactions with pigments. Color variation and mimicry are regulated predominantly by iridophore platelet thickness and, to a lesser extent, concentration of the red pteridine pigment drosopterin. Compared with each of the four morphs of model species that it resembles, R. imitator displays greater variation in both structural and pigmentary mechanisms, which may have facilitated phenotypic divergence in this species. Analyses of nonmimetic dendrobatids in other genera demonstrate that these mechanisms are widespread within the family and that poison frogs share a complex physiological "color palette" that can produce diverse and highly reflective colors.The time taken for a selectively favorable allele to spread through a single population was investigated early in the history of population genetics. The resulting formulas are based on deterministic dynamics, leading to inaccuracies at allele frequencies close to 0 or 1. To remedy this problem, the properties of the stochastic phases at either end point of allele frequency need to be analyzed. This article uses a heuristic approach to determining the expected times spent in the stochastic and deterministic phases of allele frequency trajectories, for a model of weak selection at a single locus that is valid for inbreeding populations and for autosomal and sex-linked inheritance. The net fixation time is surprisingly insensitive to the level of dominance of a favorable mutation, even with random mating. Approximate expressions for the variance of the net fixation time are also obtained, which imply that there can be substantial stochastic effects even in very large populations. The accuracy of the approximations was evaluated by comparisons with computer simulations. The results reveal some areas that need further investigation if a full understanding of selective sweeps is to be obtained, notably the possibility that fixations of slightly deleterious mutations may be affecting variability at closely linked sites.Parasites have evolved a diversity of lifestyles that exploit the biology of their hosts. Some nematodes that parasitize mammals pass via the placenta or milk from one host to another. Similar cases of vertical transmission have never been reported in avian and nonavian reptiles, suggesting that egg laying may constrain the means of parasite transmission. However, here we report the first incidence of transovarial transmission of a previously undescribed nematode in an egg-laying amniote, the common wall lizard (Podarcis muralis). Nematodes enter the developing brain from the female ovary early in embryonic development. Infected lizard embryos develop normally and hatch with nematodes residing in their braincase. We present a morphological and molecular phylogenetic characterization of the nematode and suggest that particular features of lizard biology that are absent from birds and turtles facilitated the evolutionary origin of this novel life history.When the strength or nature of a host-parasite interaction changes over the host life cycle, the consequences of parasitism can depend on host population age structure. Avian brood parasites reduce hosts' breeding success, and host age may play a role in this interaction if younger hosts are more likely parasitized and/or less able to defend themselves. We analyzed whether the age of female magpie (Pica pica) hosts is associated with parasite attack or their ability to reject foreign eggs. We recorded parasitism and model egg rejection of known-age individuals over their lifetime and established whether the likelihood of parasitism or egg rejection changed with age or longevity. Parasitism probability did not change with female age, and there was a trend toward longer-lived females being less likely to be parasitized. However, model egg rejection probability increased with age for each individual female, and longer-lived females were more prone to reject model eggs. Most females in the population were young, and the majority of them accepted model eggs, suggesting that brood parasites exploiting younger host individuals are benefitting from a lower defense level of their hosts.

Autoři článku: Jansenegan4767 (Have Fuller)