Jacobsenfenger9307

Z Iurium Wiki

We conduct a molecular study on the structural chirality in Langmuir monolayers composed of dipalmitoylphosphatidylcholine (DPPC) using in situ nonlinear optical spectroscopies, including second harmonic generation (SHG) and sum frequency generation (SFG). Chiral SHG response is observed from L-DPPC monolayers at moderate surface pressures and almost vanishes at a high surface pressure. SFG spectra of L-DPPC monolayers show chiral features that can be assigned to the terminal CH3 groups and the CH2 groups attached to the chiral center atom. This means that these achiral moieties form chiral superstructures at the interface. Along with increasing surface pressure, the structural chirality of CH3 groups shows a similar trend as that of chiral SHG, but CH2 chirality increases monotonically. Furthermore, in a racemic DPPC monolayer with a moderate surface pressure, both chiral SHG and chiral SFG of CH3 groups are absent, whereas chiral SFG of CH2 groups is clearly present, indicating that L- and D-DPPC are diastereomers at the air/water interface and interfacial CH2 prefers a certain orientation regardless of the molecular handedness. A molecular mechanism is proposed to explain the origin of the structural chirality in DPPC monolayers.The dynamics of glass-forming liquids display several outstanding features, such as two-step relaxation and dynamic heterogeneities, which are difficult to predict quantitatively from first principles. In this work, we revisit a simple theoretical model of the β-relaxation, i.e., the first step of the relaxation dynamics. The model, first introduced by Cavagna et al. [J. Phys. A Math. Gen. 36, 10721 (2003)], describes the dynamics of the system in the neighborhood of a saddle point of the potential energy surface. We extend the model to account for density-density correlation functions and for the four-point dynamic susceptibility. We obtain analytical results for a simple schematic model, making contact with related results for p-spin models and with the predictions of inhomogeneous mode-coupling theory. Building on recent computational advances, we also explicitly compare the model predictions against overdamped Langevin dynamics simulations of a glass-forming liquid close to the mode-coupling crossover. The agreement is quantitative at the level of single-particle dynamic properties only up to the early β-regime. Due to its inherent harmonic approximation, however, the model is unable to predict the dynamics on the time scale relevant for structural relaxation. Nonetheless, our analysis suggests that the agreement with the simulations may be largely improved if the modes' spatial localization is properly taken into account.In this paper, multidimensional dissipative quantum dynamics is studied within a system-bath approach in the Markovian regime using a model Lindblad operator. We report on the implementation of a Monte Carlo wave packet algorithm in the Heidelberg version of the Multi-Configuration Time-Dependent Hartree (MCTDH) program package, which is henceforth extended to treat stochastic dissipative dynamics. The Lindblad operator is represented as a sum of products of one-dimensional operators. The new form of the operator is not restricted to the MCTDH formalism and could be used with other multidimensional quantum dynamical methods. As a benchmark system, a two-dimensional coupled oscillators model representing the internal stretch and the surface-molecule distance in the O2/Pt(111) system coupled to a Markovian bath of electron-hole-pairs is used. The simulations reveal the interplay between coherent intramolecular coupling due to anharmonic terms in the potential and incoherent relaxation due to coupling to an environment. It is found that thermalization of the system can be approximately achieved when the intramolecular coupling is weak.We report the temperature evolution of hydrogen bond (HB) chains and rings in Mn5[(PO4)2(PO3(OH))2](HOH)4 to reveal conduction pathways based on difference Fourier maps with neutron- and synchrotron x-ray diffraction data. Localized proton dynamics for the five distinct hydrogen sites were observed and identified in this study. Their temperature evaluation over ten orders of magnitude in time was followed by means of quasielastic neutron scattering, dielectric spectroscopy, and ab initio molecular dynamics. Two out of the five hydrogen sites are geometrically isolated and are not suitable for long-range proton conduction. Nevertheless, the detected dc conductivity points to long-range charge transport at elevated temperatures, which occurs most likely (1) over H4-H4 sites between semihelical HB chains (interchain-exchanges) and (2) by rotations of O1-H1 and site-exchanging H4-O10-O5 groups along each semihelical HB chain (intrachain-exchanges). The latter dynamics freeze into a proton-glass state at low temperatures. Rotational and site-exchanging motions of HOH and OH ligands seem to be facilitated by collective motions of framework polyhedra, which we detected by inelastic neutron scattering.Photodissociation dynamics of the OH bond of phenol is studied with an optimally shaped laser pulse. The theoretical model consists of three electronic states (the ground electronic state, ππ* state, and πσ* state) in two nuclear coordinates (the OH stretching coordinate as a reaction coordinate, r, and the CCOH dihedral angle as a coupling coordinate, θ). The optimal UV laser pulse is designed using the genetic algorithm, which optimizes the total dissociative flux of the wave packet. The latter is calculated in the adiabatic asymptotes of the S0 and S1 electronic states of phenol. The initial state corresponds to the vibrational levels of the electronic ground state and is defined as |nr, nθ⟩, where nr and nθ represent the number of nodes along r and θ, respectively. The optimal UV field excites the system to the optically dark πσ* state predominantly over the optically bright ππ* state with the intensity borrowing effect for the |0, 0⟩ and |0, 1⟩ initial states. For the |0, 0⟩ initial condition, the photod initial state in relation to its energy.We develop closed expressions for a time-resolved photon counting signal induced by an entangled photon pair in an interferometric spectroscopy setup. Superoperator expressions in Liouville-space are derived that can account for relaxation and dephasing induced by coupling to a bath. Interferometric setups mix matter and light variables non-trivially, which complicates their interpretation. We provide an intuitive modular framework for this setup that simplifies its description. Based on the separation between the detection stage and the light-matter interaction processes, we show that the pair entanglement time and the interferometric time-variables control the observed physics time scale. Only a few processes contribute in the limiting case of small entanglement time with respect to the sample response, and specific contributions can be singled out.Can active forces be exploited to drive the consistent collapse of an active polymer into a folded structure? In this paper, we introduce and perform numerical simulations of a simple model of active colloidal folders and show that a judicious inclusion of active forces into a stiff colloidal chain can generate designable and reconfigurable two-dimensional folded structures. The key feature is to organize the forces perpendicular to the chain backbone according to specific patterns (sequences). We characterize the physical properties of this model and perform, using a number of numerical techniques, an in-depth statistical analysis of structure and dynamics of the emerging conformations. this website We discovered a number of interesting features, including the existence of a direct correspondence between the sequence of the active forces and the structure of folded conformations, and we discover the existence of an ensemble of highly mobile compact structures capable of moving from conformation to conformation. Finally, akin to protein design problems, we discuss a method that is capable of designing specific target folds by sampling over sequences of active forces.In this paper, the nature of interactions between two cyanocarbons-tetracyanoethylene (TCNE) and fumaronitrile (FN)-and a series of four secondary amines possessing a general formula C4HxN (x = 5-11) is thoroughly scrutinized. For all of the TCNE-amine pairs, tricyanovinylation (TCV) reaction is observed; however, only for pyrrole, it is accompanied with a visible charge-transfer (CT) complex formation-no such chemical individuals, characteristic for TCNE, have been noticed for aliphatic and alicyclic amines. On the contrary, FN forms such complexes with all the amines studied. Interestingly, a rather unexpected reaction of FN with alicyclic amines has been observed. The recorded electron paramagnetic resonance (EPR) spectra indicate the presence of both TCNE●- and FN●- radicals in the analyzed samples, assigned to a complete charge (electron) transfer process within the CT complexes, whose efficiency can be additionally enhanced by photoirradiation. The origination of the former radical, whose presence is observed also in the TCNE-diethylamine mixture, is as well proposed to result indirectly from the TCV reaction, occurring for this system. Finally, the superhyperfine structure of EPR spectra, indicating the existence of some secondary interactions of the radicals with surrounding compounds, is discussed. Formation of CT complexes and tricyanovinylates has been investigated and characterized with UV-Vis spectroscopy, while the presence of (cyano)radicals in the analyzed mixtures has been evidenced by (photoinduced) EPR measurements. Interpretation of the experimental results is also supplemented with computer simulations including density functional theory calculations.Type V natural deep eutectic solvents considering menthol, thymol, and levulinic acids are studied considering a combined experimental and theoretical approach to develop a multiscale characterization of these fluids with particular attention to intermolecular forces (hydrogen bonding) and their relationships with macroscopic behavior. Density, viscosity, refraction index, and thermal conductivity were measured as a function of temperature, providing a thermophysical characterization of the fluids. Quantum chemistry was applied to characterize hydrogen bonding in minimal molecular clusters, allowing us to quantify interaction strength, topology (according to atoms in a molecule theory), and electronic properties. Classical molecular dynamics simulations were also performed, allowing us to characterize bulk liquid phases at the nanoscopic level, analyzing the fluid's structuring, void distribution, and dynamics. The reported results allowed us to infer nano-macro relationships, which are required for the proper design of these green solvents and their application for different technologies.Silicon carbide is an important wide-bandgap semiconductor with wide applications in harsh environments and its applications rely on a reliable surface, with dry or wet oxidation to form an insulating layer at temperatures ranging from 850 to 1250 °C. Here, we report that the SiC quantum dots (QDs) with dimensions lying in the strong quantum confinement regime can be naturally oxidized at a much lower temperature of 220 °C to form core/shell and heteroepitaxial SiC/SiO2 QDs with well crystallized silica nanoshells. The surface silica layer enhances the radiative transition rate of the core SiC QD by offering an ideal carrier potential barrier and diminishes the nonradiative transition rate by reducing the surface dangling bonds, and, as a result, the quantum yield is highly improved. The SiC/SiO2 QDs are very stable in air, and they have better biocompatibility for cell-labeling than the bare SiC QDs. These results pave the way for constructing SiC-based nanoscale electronic and photonic devices.

Autoři článku: Jacobsenfenger9307 (Burris Berry)