Jacksongoode9557
The binding amount of rubber and reinforcing filler directly affects the quality of rubber products. The effect of aromatic solvent oil (S-150) on the binding amount of rubber and reinforcing filler was studied. In order to determine the suitability of rubber after adding S-150, the curing characteristics, physical performance and tensile properties of rubber samples were tested and analyzed. Meanwhile, the microstructure of the composite was analyzed by scanning electron microscopy (SEM). The test results showed that the binding amount of rubber and reinforcing filler was increased after adding S-150. The density and Shore A hardness were decreased. When carbon black was 80 phr, after adding 40 phr of S-150, the rebound resilience of rubber increased by 13% on average, and the elongation at break increased by 88% on average. When white carbon black was between 10-70 phr, after adding 65 phr of S-150, the rebound resilience of rubber increased by 9% on average, and the elongation at break increased by 51% on average. Modulus at 100% and tensile strength were decreased. Meanwhile, it could be judged from the microstructure results that the reticulation space inside the rubber was increased, the agglomerate particles were relatively uniform, and no bubbles or holes were observed. The mechanism that S-150 could increase the binding amount of rubber was analyzed according to the like-dissolves-like principle. This research achievement could lead to improvements in the quality of rubber products and promote their practical application.Pineapple leaf fibre (PALF) is one of the natural fibres with the highest tensile strength and cellulose content. This has led to the investigation of the application of short, long, random mats, and unidirectional types as reinforcement agents, but there is limited study on the usage of woven PALF in composites. Therefore, this study aims to investigate the potential of this woven PALF in reinforcing epoxy resin (ER) composite as well as the effect of layering numbers and fibre orientations on the mechanical properties of the product. This involved using hand lay-up and press moulding with a hydraulic machine to produce the composite and specimen test while 2, 3, and 4 layers of woven PALF were used as the layering number parameter. Moreover, the warp and weft direction of the woven PALF were used to simulate the effect of fibre orientation in composites. The findings showed that the 3-layer woven PALF performed better in terms of tensile and flexural properties than the other layers. It was also discovered that the orientation of the composite with warp direction is slightly higher than the weft direction. Furthermore, the scanning electron microscopic (SEM) method was applied to analyse the tensile fracture of the composites and the results showed that the interfacial adhesion of the 3-layer woven PALF successfully transferred the load to the epoxy resin matrix due to its reinforcement role in composites.In heterogeneous polymers and emulsions, the volume fraction of the discrete phase and the frequency of electromagnetic waves affect the accuracy of the dielectric model. The integral method was used to modify the Maxwell-Wagner (M-W) heterogeneous dielectric theory, and a new model for the complex dielectric constant of polymers and emulsions was established. The experimental data were compared with the results of the M-W heterogeneous dielectric integral modification model and other theoretical models for different frequencies and volume fractions of the discrete phase. We discovered that with a decreasing volume fraction of the discrete phase, the dominant frequency range of the integral modification model expanded. When the volume fraction of the discrete phase is 10%, the dominant frequency range reaches 3 GHz. When the volume fraction of the discrete phase is 1%, the dominant frequency range reaches 4 GHz. When the volume fraction of the discrete phase is 0.06%, the dominant frequency range of the real part reaches 9.6 GHz, and the dominant frequency range of the imaginary part reaches 7.2 GHz. These results verify the advantages of the M-W modification model, which provides a theoretical basis to study the dielectric properties of polymers and emulsions, as well as for microwave measurement.New sequences of nanocomposites including numerous maleic acid-grafted poly(butylene adipate-co-terephthalate) (g-PBAT) and cellulose nanocrystals (CNC) were efficaciously fabricated via transesterification and polycondensation processes with the covalent bonds between the polymer and reinforcing fillers. The grafting interaction of maleic acid onto PBAT was successfully demonstrated using Fourier transform infrared (FTIR) and 13C-nuclear magnetic resonance (NMR) spectra. The morphology of g-PBAT/CNC nanocomposites was investigated by wide-angle X-ray diffraction and transmission electron microscopy. Both results indicate that the CNC was randomly dispersed into the g-PBAT polymer matrix. The storage modulus at -80 and 25 °C was significantly enhanced with the incorporation of CNC into g-PBAT matrix. The crystallization rate of g-PBAT/CNC nanocomposites increased as the loading of CNC increased. With the incorporation of 3 wt% CNC, the half-time for crystallization of the g-PBAT/CNC composite decreased about 50~80% as compared with the same isothermal crystallization of pure polymer matrix. All water vapor permeation (WVP) values of all g-PBAT/CNC nanocomposites decreased as the loading of CNC increased. The decrease in WVP may be attributed to the addition of stiff CNC, causing the increase on the permeation route in the water molecules in the g-PBAT polymer matrix.This study attempted to use fishery processing wastes to produce protease by Paenibacillus elgii TKU051. Of the tested wastes, tuna head powder (THP) was found to be the most effective carbon and nitrogen (C/N) source, and the optimal conditions were as follows 0.811% THP, 0.052% K2HPO4, 0.073% MgSO4, initial pH of 8.96, incubation temperature of 31.4 °C, and incubation time of 3.092 days to achieve the maximum protease activity of 2.635 ± 0.124 U/mL. A protease with a molecular weight of 29 kDa was purified and biochemically characterized. Liquid chromatography with tandem mass spectrometry analysis revealed an amino acid sequence of STVHYSTR of P. elgii TKU051 protease, suggesting that the enzyme may belong to the M4 family of metalloproteases. The optimal activity of the enzyme was achieved at 60 °C and pH 8. P. ODM208 elgii TKU051 protease was strongly inhibited by ethylenediaminetetraacetic acid and 1,10-phenanthroline, indicating its precise metalloprotease property. P. elgii TKU051 protease displayed the activity toward casein and raw fishery wastes such as tuna heads, tuna viscera, shrimp heads, and squid pens. Finally, the purified P. elgii TKU051 protease could improve the free-radical scavenging activity of fishery wastes. In short, P. elgii TKU051 has potential application in eco-friendly approaches to efficiently convert fishery wastes to metalloprotease.We successfully prepared butyl rubber (IIR)/polypropylene (PP) thermoplastic vulcanizate (IIR/PP-TPV) for shock-absorption devices by dynamic vulcanization (DV) using octyl-phenolic resin as a vulcanizing agent and studied the morphological evolution and properties during DV. We found that the damping temperature region of the IIR/PP-TPV broadened with the disappearance of the glass transition temperature (Tg) in the PP phase, which is ascribed to the improvement of compatibility between the IIR and PP with increasing DV time. As DV progresses, the size of the dispersed IIR particles and the PP crystalline phase decreases, leading to the formation of a sea-island morphology. After four cycles of recycling, the retention rates of tensile strength and elongation at break of the IIR/PP-TPV reached 88% and 86%, respectively. The size of the IIR cross-linking particles in the IIR/PP-TPV becomes larger after melt recombination, and the continuous PP phase provides excellent recyclability. Significantly, the prepared IIR/PP-TPV exhibits excellent recyclability, high elasticity, and good damping property.Melt spinning machines must be set up according to the process parameters that result in the best end product quality. In this study, artificial intelligence algorithms were employed to create a system that detects abnormal processing parameters and suggests strategies to improve quality. Polypropylene (PP) was selected as the experimental material, and the quality achieved by adjusting the melt spinning machine's processing parameter settings was used as the basis for judgement. The processing parameters included screw temperature, gear pump temperature, die head temperature, screw speed, gear pump speed, and take-up speed as the six control factors. The four quality characteristics included fineness, breaking strength, elongation at break, and elastic energy modulus. In the first part of our study, we applied fast deep-learning characteristic grid calculations on a 440-item historical data set to train a deep learning neural network and determine methods for multi-quality optimization. In the second part, with the best processing parameters as a benchmark, and given abnormal quality data derived from processing parameter settings deviating from these optimal values, several machine learning and deep learning methods were compared in their ability to find the settings responsible for the abnormal data, which was randomly split into a 210-item training data set and a 210-item verification data set. The random forest method proved to be the best at identifying responsible parameter settings, with accuracy rates of single and double identification classifications together of 100%, for single factor classification of 98.3%, and for double factor classification of 96.0%, thereby confirming that the diagnostic method proposed in this study can effectively predict product abnormality and find the parameter settings responsible for product abnormality.The paper describes the formation of six aromatic N-(2-arylethyl)-2-methylprop-2-enamides with various substituents in benzene ring, viz., 4-F, 4-Cl, 2,4-Cl2, 4-Br, 4-OMe, and 3,4-(OMe)2 from 2-arylethylamines and methacryloyl chloride in ethylene dichloride with high yields (46-94%). The structure of the compounds was confirmed by 1H NMR, 13C NMR, IR, and HR-MS. Those compounds were obtained to serve as functionalized templates for the fabrication of molecularly imprinted polymers followed by the hydrolysis of an amide linkage. In an exemplary experiment, the imprinted polymer was produced from N-(2-(4-bromophenyl)ethyl)-2-methylprop-2-enamide and divinylbenzene, acting as cross-linker. The hydrolysis of 2-(4-bromophenyl)ethyl residue proceeded and the characterization of material including SEM, EDS, 13C CP MAS NMR, and BET on various steps of preparation was carried out. The adsorption studies proved that there was a high affinity towards the target biomolecules tyramine and L-norepinephrine, with imprinting factors equal to 2.47 and 2.50, respectively, when compared to non-imprinted polymer synthesized from methacrylic acid and divinylbenzene only.Lignin is the world's most naturally abundant aromatic polymer, which makes it a sustainable raw material for engineered polymers and fiber manufacturing. Dry-jet gel-spinning was used to fabricate poly(vinyl alcohol) (PVA) fibers having 30% or more of the lignin biopolymer. To achieve this goal, 0.45 wt.% of aqueous sodium polyacrylate (SPA, at 0.55 wt.% solids) was added to spinning dopes of PVA dissolved in dimethylsulfoxide (DMSO). SPA served to enable the spinning of fibers having high lignin content (i.e., above 30%) while eliminating the aging of as-spun gel fiber prior to elevated temperature drawing. SPA impedes the migration of acetone soluble lignin from the skin of as-spun gel fibers, because SPA is insoluble in acetone, which is also a nonsolvent coagulant for PVA. PVA fibers having 30% lignin exhibited the highest tenacity of 1.3 cN/dtex (centinewton/decitex) and specific modulus 35.7 cN/dtex. The drawn fiber of 70% lignin to PVA, showed tenacity and specific modulus values of 0.94 cN/dtex and 35.