Iveygriffin5338
Interactions between drug molecules, nanocarrier components, and surrounding media influence the properties and therapeutic efficacies of nanomedicines. In this study, we investigate the role that reversible covalent loading of a hydrophobic drug exerts on intra-nanoparticle physical properties and explore the utility of this payload control strategy for tuning the access of active agents and, thereby, the stimuli sensitivity of smart nanomaterials. Glutathione sensitivity was controlled via altering the degree of hydrophobic payload loading of disulfide-linked camptothecin-conjugated sugar-based nanomaterials. Increases in degrees of camptothecin conjugation (fCPT) decreased aqueous accessibility and reduced glutathione-triggered release. Although the lowest fCPT gave the fastest camptothecin release, it resulted in the lowest camptothecin concentration. Remarkably, the highest fCPT resulted in a 5.5-fold improved selectivity against cancer vs noncancerous cells. This work represents an advancement in drug carrier design by demonstrating the importance of controlling the amount of drug loading on the overall payload and its availability.The efficiency of photodynamic therapy (PDT) highly depends on the tumor oxygenation state. However, PDT itself can not only cause oxygen depletion but also prevent oxygen supply in tumors. Such self-confinement effect significantly limits the efficacy of PDT, especially fractionated PDT (fPDT). Herein, we proposed a multifunctional nanoparticle system having a four-pronged pipelined therapeutic scheme to address this issue. It performed in situ oxygen supply and tumor microenvironment modulation together to effectively maintain tumor oxygenation even after multiple PDT fractions. It also introduced a new photosensitizer that not only was highly efficient in producing ROS but also could visually report tumor oxygenation state in a real-time fashion. All these functions were integrated into a single nanoparticulate system to obtain pipeline-style teamwork, which was then applied for the fPDT on a mice tumor model, and achieved significantly better tumor oxygenation even after multiple PDT fractions, ending up with a better tumor inhibition efficiency.Bridging integrator-1 (BIN1) is a family of banana-shaped molecules implicated in cell membrane tubulation. To understand the curvature sensitivity and functional roles of BIN1 splicing isoforms, we engineered vertical nanobars on a cell culture substrate to create high and low curvatures. When expressed individually, BIN1 isoforms with phosphoinositide-binding motifs (pBIN1) appeared preferentially at high-curvature nanobar ends, agreeing well with their membrane tubulation in cardiomyocytes. In contrast, the ubiquitous BIN1 isoform without phosphoinositide-binding motif (uBIN1) exhibited no affinity to membranes around nanobars but accumulated along Z-lines in cardiomyocytes. Importantly, in pBIN1-uBIN1 coexpression, pBIN1 recruited uBIN1 to high-curvature membranes at nanobar ends, and uBIN1 attached the otherwise messy pBIN1 tubules to Z-lines. The complementary cooperation of BIN1 isoforms (comboBIN1) represents a novel mechanism of T-tubule formation along Z-lines in cardiomyocytes. Dysregulation of BIN1 splicing, e.g., during myocardial infarction, underlied T-tubule disorganization, and correction of uBIN1/pBIN1 stoichiometry rescued T-tubule morphology in heart disease.Despite the great promise achieved by immune checkpoint blockade (ICB) therapy in harnessing the immune system to combat different tumors, limitations such as low objective response rates and adverse effects remain to be resolved. Here, an anti-inflammatory nanofiber hydrogel self-assembled by steroid drugs is developed for local delivery of antiprogrammed cell death protein ligand 1 (αPDL1). Interestingly, on the one hand this carrier-free system based on steroid drugs can reprogram the pro-tumoral immunosuppressive tumor microenvironment (TME) to antitumoral TME; on the other hand, it would serve as a reservoir for sustained release of αPDL1 so as to synergistically boost the immune system. By local injection of such αPDL1-loaded hydrogel, effective therapeutic effects were observed in inhibiting both local tumors and abscopal tumors without any treatment. This work presents a unique hydrogel-based delivery system using clinically approved drugs, showing promise in improving the objective response rate of ICB therapy and minimizing its systemic toxicity.Electron tunneling spectroscopy is a powerful technique to probe the unique physical properties of one-dimensional (1D) single-walled carbon nanotubes (SWNTs), such as the van Hove singularities in the density of states or the power-law tunneling probability of a Luttinger liquid. However, little is known about the tunneling behavior between two 1D SWNTs over a large energy spectrum. Here, we investigate the electron tunneling behavior between two crossed SWNTs across a wide spectral window up to 2 eV in the unique carbon nanotube-hexagonal boron nitride-carbon nanotube heterojunctions. We observe many sharp resonances in the differential tunneling conductance at different bias voltages applied between the SWNTs. G150 price These resonances can be attributed to elastic tunneling into the van Hove singularities of different 1D subbands in both SWNTs, and they allow us to determine the quasi-particle bandgaps and higher-lying 1D subbands in SWNTs on the insulating substrate.The charge density wave (CDW) phase is a macroscopic quantum state with periodic charge density modulation accompanied by periodic lattice distortion in low-dimensional metals. External fields, such as an electric field and optical excitation, can trigger the transitions among different CDW states, leaving an under-explored mechanism and attracting great interest toward optoelectronic applications. Here, we explore a photoinduced phase transition in 1T-TaS2 under an electrical field. By analyzing the phase transition probability, we obtained a linear dependence of the phase transition barrier on the electric field and laser energy density. Additionally, the threshold laser energy for the phase transition decreases linearly with an increasing applied electrical field. Finally, picojoule photodetection was realized in the visible and near-infrared ranges near the CDW transition edge. Our work will promote the understanding of the CDW phase transition mechanism as well as open pathways for optoelectronic applications.