Ingramholcomb5591
Excited-state intramolecular proton transfer (ESIPT) and twist intramolecular charge transfer (TICT) are the two most fundamental dynamic processes, ubiquitous in biological and chemical reactions. The excited-state properties of (E-8-((4-dimethylamino-phenylimino)-methyl)-7-hydroxy-4-methyl-2H-chromen-2-one (CDPA) in various solvents with different polarities were investigated by using steady-state and femtosecond transient absorption spectroscopy combined with DFT/TDDFT calculations. The results demonstrated that CDPA exhibited low fluorescence in polar acetonitrile (ACN) due to ESIPT but high fluorescence in nonpolar n-Hexane was attributed to intramolecular rotation blocking ESIPT. TDDFT calculations confirmed that the dramatic phenyl group torsional of CDPA in Hexane, whereas a near planar conformation in ACN solvent. The ESIPT barrier decreases regularly with the increase of solvent polarity from n-Hexane, tetrahydrofuran to ACN solvent. These results demonstrated that the ESIPT and TICT processes of CDPA are competitive mechanisms. Our work revealed the effect solvent polarity on the emission behavior and excited-state deactivation mechanism of CDPA, which could help to design and develop new polarity probe in the microenvironments. Rumen fermentation is known to be effective for lignocellulosic-wastes biodegradation to certain extent but it is still unclear if there exists a termination of the microorganisms' action to further degrade the bio-refractory fractions. In order to illuminate the related microbiological characteristics, experiments were conducted in a prolonged duration of rumen fermentation of mechanically ruptured wheat straw, with inoculation of cow rumen microorganisms in vitro. Although the organic wastes could not be biodegraded quickly, continuous conversion of the lignocellulosic contents to volatile fatty acids and biogas proceeded in the duration of more than three months, resulting in 96-97% cellulose and hemicellulose decomposition, and 42% lignin decomposition. X-ray diffraction and Fourier transform infrared spectroscopy further demonstrated the characteristics of lignocellulosic structure decomposition. Under the actions of cow rumen microorganisms, stable pH was maintained in the fermentation liquid, along with a steady NH4+-N, volatile fatty acids accumulation, and a large buffering ability. It was identified by enzyme analysis and Illumina MiSeq sequencing that the rich core lignocellulolytic enzymes secreted by the abundant and diverse rumen bacteria and fungi contributed to the persistent degradation of lignocellulosic wastes. Members of the Clostridiales order and Basidiomycota phylum were found to be the dominant lignocellulolytic bacteria and fungi, respectively. It could thus be inferred that the main lignocellulose degradation processes were a series of catalytic reactions under the actions of lignocellulolytic enzymes secreted from bacteria and fungi. The dominant hydrogenotrophic methanogens (Methanomassiliicoccus, Methanobrevibacter, Methanosphaera, and Methanoculleus) in the rumen could also assist CH4 production if the rumen fermentation was followed with anaerobic digestion. This study aims to investigate the neuroprotective effects of 6‴-feruloylspinosin (6-FS), one of the main active flavonoid components in Sour Jujube seeds, on beta-amyloid (Aβ) protein transgenic Caenorhabditis elegans (GMC101) and PC12 cells, and determine the molecular mechanism of its action. We found that 6-FS could ameliorate the progression of the Alzheimer's disease (AD) phenotype by delaying the aging, decreasing the rate of paralysis, enhancing resistance to heat stress, and increasing the chemotaxis ability, and promotes autophagy activity though autophagy/lysosome pathway in GMC101. Furthermore, 6-FS reduced Aβ-induced toxicity by inhibiting the deposition of Aβ and the aggregated proteins, increasing the level of mitophagy in PC12 through promoting the expression of Pink1/Parkin in the mitophagy pathway. Our findings suggest that 6-FS may be used as a medicinal supplement for treating AD. Free-range cattle rearing in arid landscapes contributes profoundly to ecosystem degradation. Cattle dung nutrification in aquatic habitats potentially shapes species diversity and abundance due to resource availability. These nutrient-enriched environments may increase oviposition by mosquitoes and influence proliferation of disease vectors. Here, we examined mosquito larval abundance of Culex pipiens pipiens (culicine) and an unidentified Anopheles (anopheline) species across different concentration treatments of nutrient (cattle dung) loadings (T1-T4; 1 g L-1, 2 g L-1, 4 g L-1 and 8 g L-1, respectively) in a randomised outdoor mesocosm experiment. The experiment was run for two weeks post-dung inoculation (Day 7 to 21), with mosquito larvae collected (Day 14 and 21), identified and quantified. Higher dung nutrient concentrations significantly increased mosquito larval abundance relative to dung-free controls. Culicine larvae were 26-times more abundant than anopheline on average. check details Higher dung concentrations also tended to promote more rapid development in larval mosquitoes. With no colonisation by mosquito larvae in the control treatments, we conclude that the input of dung in aquatic ecosystems promotes vector development and abundance with the potential to increase risk of mosquito-borne infections. We therefore recommend sustainable management policies that tackle likely ecological disservices attributable to free-ranging livestock communities. Microbes in epiphytic biofilms and surface sediments play crucial roles in the biogeochemical cycles in wetlands. However, little is known about the compositions of microbial community in wetlands dominated with submersed macrophytes. In this study, bacterial and eukaryotic community in epiphytic biofilms and surface sediments were investigated in wetlands with artificial plants and Myriophyllum verticillatum from September (~27 °C) to January (~9 °C). A total of 30 (including 13 bacterial and 17 eukaryotic) and 34 (including 14 bacterial and 20 eukaryotic) phyla were detected in epiphytic biofilms and sediments, respectively. Microbial community in epiphytic biofilms shifted with decreasing temperature, and biofilms on M. verticillatum were generally similar to those on artificial plants. Though the OTUs and Shannon values were significantly higher in sediments than epiphytic biofilms (p 0.7, p less then 0.05). These data suggest that there were complex interactions among microbes in epiphytic biofilms than sediments.