Hyllestedsommer4556

Z Iurium Wiki

9% indicated EVALI made them less interested in using e-cigarettes in the future. EVALI awareness was significantly associated with e-cigarette risk perceptions (ie, that e-cigarettes are as harmful as smoking).

Despite the passage of time, considerable lack of knowledge and misperceptions about EVALI remain among those who smoke. Our findings suggest the need for continued efforts to promote better understanding of EVALI and appropriate behavioural and policy responses.

Despite the passage of time, considerable lack of knowledge and misperceptions about EVALI remain among those who smoke. Our findings suggest the need for continued efforts to promote better understanding of EVALI and appropriate behavioural and policy responses.

Prehospital emergency care helps to reduce mortality and morbidity from time-sensitive conditions. In this study, we summarised the perspectives of various stakeholders on the establishment of a prehospital integrated emergency response system.

We conducted a qualitative study using a key informant interview. We used a purposive sampling technique to select participants from the sector offices based on their proximity to the problem under consideration. We took verbal informed consent from each participant before the interviews. We conducted a thematic content analysis.

Twenty-three study participants, working at six sector offices (the zonal health office, University of Gondar, traffic office, fire extinguisher office, the Amhara regional health bureau and the Ethiopian red cross association), were included in this study. Five major themes have emerged. The themes that emerged include participants' views on the importance of prehospital service, barriers and opportunities for establishing the system, aerent stakeholders were stated as an opportunity to establish the system. With the growing number of injuries and non-communicable diseases, emergency management should get due attention.We assessed similarities and differences in the electrographic signatures of local field potentials (LFPs) evoked by different pharmacological agents in zebrafish larvae. We then compared and contrasted these characteristics with what is known from electrophysiological studies of seizures and epilepsy in mammals, including humans. Ultimately, our aim was to phenotype neurophysiological features of drug-induced seizures in larval zebrafish for expanding knowledge on the translational potential of this valuable alternative to mammalian models. PACAP 1-38 order LFPs were recorded from the midbrain of 4-d-old zebrafish larvae exposed to a pharmacologically diverse panel of seizurogenic compounds, and the outputs of these recordings were assessed using frequency domain analysis. This included analysis of changes occurring within various spectral frequency bands of relevance to mammalian CNS circuit pathophysiology. From these analyses, there were clear differences in the frequency spectra of drug-exposed LFPs, relative to controls, many of which shared notable similarities with the signatures exhibited by mammalian CNS circuits. These similarities included the presence of specific frequency components comparable to those observed in mammalian studies of seizures and epilepsy. Collectively, the data presented provide important information to support the value of larval zebrafish as an alternative model for the study of seizures and epilepsy. These data also provide further insight into the electrophysiological characteristics of seizures generated in nonmammalian species by the action of neuroactive drugs.Here, we investigate stimulus generalization in a cerebellar learning paradigm, called eyeblink conditioning. Mice were conditioned to close their eyes in response to a 10-kHz tone by repeatedly pairing this tone with an air puff to the eye 250 ms after tone onset. After 10 consecutive days of training, when mice showed reliable conditioned eyelid responses to the 10-kHz tone, we started to expose them to tones with other frequencies, ranging from 2 to 20 kHz. We found that mice had a strong generalization gradient, whereby the probability and amplitude of conditioned eyelid responses gradually decreases depending on the dissimilarity with the 10-kHz tone. Tones with frequencies closest to 10 kHz evoked the most and largest conditioned eyelid responses and each step away from the 10-kHz tone resulted in fewer and smaller conditioned responses (CRs). In addition, we found that tones with lower frequencies resulted in CRs that peaked earlier after tone onset compared with those to tones with higher frequencies. Together, our data show prominent generalization patterns in cerebellar learning. Since the known function of cerebellum is rapidly expanding from pure motor control to domains that include cognition, reward-learning, fear-learning, social function, and even addiction, our data imply generalization controlled by cerebellum in all these domains.To better understand complex systems, such as the brain, studying the interactions between multiple brain regions is imperative. Such experiments often require delineation of multiple brain regions on microscopic images based on preexisting brain atlases. Experiments examining the relationships of multiple regions across the brain have traditionally relied on manual plotting of regions. This process is very intensive and becomes untenable with a large number of regions of interest (ROIs). To reduce the amount of time required to process multi-region datasets, several tools for atlas registration have been developed; however, these tools are often inflexible to tissue type, only supportive of a limited number of atlases and orientation, require considerable computational expertise, or are only compatible with certain types of microscopy. To address the need for a simple yet extensible atlas registration tool, we have developed FASTMAP, a Flexible Atlas Segmentation Tool for Multi-Area Processing. We demonstrate its ability to register images efficiently and flexibly to custom mouse brain atlas plates, to detect differences in the regional numbers of labels of interest, and to conduct densitometry analyses. This open-source and user-friendly tool will facilitate the atlas registration of diverse tissue types, unconventional atlas organizations, and a variety of tissue preparations.Modern molecular and biochemical neuroscience studies require analysis of specific cellular populations derived from brain tissue samples to disambiguate cell type-specific events. This is particularly true in the analysis of minority glial populations in the brain, such as microglia, which may be obscured in whole tissue analyses. Microglia have central functions in development, aging, and neurodegeneration and are a current focus of neuroscience research. A long-standing concern for glial biologists using in vivo models is whether cell isolation from CNS tissue could introduce ex vivo artifacts in microglia, which respond quickly to changes in the environment. Mouse microglia were purified by magnetic-activated cell sorting (MACS), as well as cytometer-based and cartridge-based fluorescence-activated cell sorting (FACS) approaches to compare and contrast performance. The Cx3cr1-NuTRAP mouse model was used to provide an endogenous fluorescent microglial marker and a microglial-specific translatome profile as a baseline comparison lacking cell isolation artifacts. All sorting methods performed similarly for microglial purity with main differences being in cell yield and time of isolation. Ex vivo activation signatures occurred principally during the initial tissue dissociation and cell preparation and not the cell sorting. The cell preparation-induced activational phenotype could be minimized by inclusion of transcriptional and translational inhibitors or non-enzymatic dissociation conducted entirely at low temperatures. These data demonstrate that a variety of microglial isolation approaches can be used, depending on experimental needs, and that inhibitor cocktails are effective at reducing cell preparation artifacts.The neural basis of attention is thought to involve the allocation of limited neural resources. However, the quantitative validation of this hypothesis remains challenging. Here, we provide quantitative evidence that the nonuniform allocation of neural resources across the whole cerebral gray matter reflects the broad-task process of sustained attention. We propose a neural measure for the nonuniformity of whole-cerebral allocation using functional magnetic resonance imaging. We found that this measure was significantly correlated with conventional indicators of attention level, such as task difficulty and pupil dilation. We further found that the broad-task neural correlates of the measure belong to frontoparietal and dorsal attention networks. Finally, we found that patients with attention-deficit/hyperactivity disorder showed abnormal decreases in the level of the proposed measure, reflecting the executive dysfunction. This study proposes a neuromarker suggesting that the nonuniform allocation of neural resources may be the broad-task neural basis of sustained attention.The temporal dynamics of perceptual decisions offer a key window into the cognitive processes contributing to decision-making. Investigating perceptual dynamics in a genetically tractable animal model can facilitate the subsequent unpacking of the underlying neural mechanisms. Here, we investigated the time course as well as fundamental psychophysical constants governing visual perceptual decision-making in freely behaving mice. We did so by analyzing response accuracy against reaction time (RT), i.e., conditional accuracy, in a series of two-alternative forced choice (2-AFC) orientation discrimination tasks in which we varied target size, luminance, duration, and presence of a foil. Our results quantified two distinct stages in the time course of mouse visual decision-making a "sensory encoding" stage in which conditional accuracy exhibits a classic trade-off with response speed, and a subsequent "short-term memory (STM)-dependent" stage in which conditional accuracy exhibits a classic asymptotic decay following stimulus offset. We estimated the duration of visual sensory encoding as 200-320 ms across tasks, the lower bound of the duration of STM as ∼1700 ms, and the briefest duration of visual stimulus input that is informative as ≤50 ms. Separately, by varying stimulus onset delay, we demonstrated that the conditional accuracy function (CAF) and RT distribution can be independently modulated, and found that the duration for which mice naturally withhold from responding is a quantitative metric of impulsivity. Taken together, our results establish a quantitative foundation for investigating the neural circuit bases of visual decision dynamics in mice.

Asthma is the most common chronic disease leading to hospital admissions and readmissions in childhood. Bedside nurses and respiratory therapists are the primary asthma educators, but they may lack time or knowledge to provide comprehensive asthma education and identify barriers to care. Patients and their parent(s) may benefit from comprehensive education and assessment of barriers from a certified asthma educator.

A team of certified asthma educators used a quality improvement method to create an in-patient asthma education consulting service. The in-patient pulmonary consult and medical teams referred subjects ≥ 1 y in age with a new or existing diagnosis of asthma who had been admitted to the ICU or identified as having concerns for poor medication adherence to the asthma consult. The asthma consult provided face-to-face education with the subject and parent(s), addressed barriers to the plan of care, and helped facilitate appointments to an asthma specialist after discharge.

There were 126 subjects eligible for the asthma consult pilot implemented October 1, 2018-April 30, 2020.

Autoři článku: Hyllestedsommer4556 (Damgaard Lundqvist)