Hviidspears2044
Municipal solid waste (MSW) is one of the most urgent issues associated with economic growth and urban population. When untreated, it generates harmful and toxic substances spreading out into the soils. When treated, they produce an important amount of Greenhouse Gas (GHG) emissions directly contributing to global warming. With its promising path to sustainability, the Danish case is of high interest since estimated results are thought to bring useful information for policy purposes. Here, we exploit the most recent and available data period (1994-2017) and investigate the causal relationship between MSW generation per capita, income level, urbanization, and GHG emissions from the waste sector in Denmark. We use an experiment based on Artificial Neural Networks and the Breitung-Candelon Spectral Granger-causality test to understand how the variables, object of the study, manage to interact within a complex ecosystem such as the environment and waste. Through numerous tests in Machine Learning, we arrive at results that imply how economic growth, identifiable by changes in per capita GDP, affects the acceleration and the velocity of the neural signal with waste emissions. We observe a periodical shift from the traditional linear economy to a circular economy that has important policy implications.Land application of biosolids is one potential source of pharmaceuticals and personal care products (PPCPs) into agricultural soils. Degradation is an important natural attenuation pathway that affects the fate and transport of PPCPs in the soil system and biosolids application could alter the process. The present study assessed the effect of individual and mixture compound environments on the biodegradation rate and half-life of three non-steroidal anti-inflammatory drugs (NSAIDs), naproxen (NPX), ibuprofen (IBF), and ketoprofen (KTF), in a loamy sand textured agricultural soil receiving an alkaline treated biosolid (ATB) amendment. A prolonged half-life of the target NSAIDs was determined for sterile soils and shorter half-lives in unsterile soils, indicating the loss of target compounds in all treatments was mainly attributed to biodegradation and followed first-order kinetics. IBF and NPX showed low to moderate persistence in soil and ATB amended soil, with half-lives ranging from 4.9 to 14.8 days, while KTF appeared to be highly persistent with an average half-life of 33 days. The order in which the target NSAIDs disappeared in both soil and ATB amended soil was IBF > NPX > KTF, for both individual and mixture compound treatments. Soils that received the ATB amendment demonstrated inhibited degradation of NPX in all treatments, as well as IBF and KTF in individual compound treatment over the 14-day incubation study. We also observed an inhibition effect from the ATB amendment in sterile soil treatments. In mixture compound treatments, IBF degradation was inhibited in both soil and ATB amended soil. The degradation rate of KTF in mixture compound environment in soil was lower, while the opposite effects were observed in ATB amended soils. For NPX, the degradation was enhanced in mixture compound environment in ATB amended soil, while the same degradation rate of NPX was calculated in soil.A time series field survey were conducted in Port Shelter, a subtropical coastal water in NW Pacific, beginning before the onset of a chain of Noctiluca scintillans and/or Mesodinium rubrum blooms, and ending after the blooms had declined. At the first mixed bloom stage, seed of N. scintillans and the consequent outbreak of both N. scintillans and M. rubrum were largely due to the physical forcing. Plenty food supply and their different feeding habits supported N. scintillans and M. rubrum to bloom massively and concomitantly. Following that, there was a small N. scintillans bloom followed by a small crest of M. this website rubrum. Their initiation and scale were mainly affected by limited food supply and/or the inferior food source. Sudden change of wind from mild northeast wind to strong southeast wind might contribute to the termination of N. scintillans bloom. Finally, physical accumulation was the most important driving factors of the formation and dispersal of the third and largest bloom of N. scintillans. Formation of these bloom events may involve vertical migration and/or the concentrating mechanism of M. rubrum and N. scintillans. Meanwhile, biotic interactions such as mutual supportive relationship between N. scintillans and M. rubrum, and O. hongkongense fed on the progametes of N. scintillans, as well as other abiotic factors like seawater temperature and rainfall, also play important roles in this series of bloom events. Our findings have important implications for coastal zones worldwide, which are affected recurrently by these two ubiquitous red tide-forming species.This study aims to examine the flocculation efficiency of Porphyridium purpureum (i.e. a red marine microalga with high content of pigments and fatty acids) grown in seawater medium using polyacrylamide polymers and alkaline flocculation. Polymers Flopam™ and FO3801 achieved the highest flocculation efficiency of over 99% at the optimal dose of 21 mg per g of dry biomass through charge neutralisation and bridging mechanism. The addition of sodium hydroxide, potassium hydroxide, and sodium carbonate also achieved flocculation efficiency of 98 and 91%, respectively, but high doses were required (i.e. > 500 mg per g of dry biomass). Calcium hydroxide was not as effective and could only achieve 75% flocculation efficiency. Precipitation of magnesium hydroxide was identified as the major cause of hydroxide-induced flocculation. On the other hand, sodium carbonate addition induced flocculation via both magnesium and calcium carbonate co-precipitation. The large mass of precipitates caused a sweeping effect and enmeshed the microalgal cells to trigger sedimentation. Cell membrane integrity analysis of flocculated P. purpureum indicated that polyacrylamide polymers led to significant compromised cells (i.e. 96%), compared to the alkaline bases (70-96% compromised cells). These results appear to be the first to demonstrate the high efficiency of polyacrylamide polymer and alkaline flocculation of P. purpureum but at the expense of the biomass quality.