Hvidosborne7282

Z Iurium Wiki

BACKGROUND Studies of the human filarial parasite have been hampered by the fact that they are obligate parasites with long life cycles. In other pathogenic infections, in vivo imaging systems (IVIS) have proven extremely useful in studying pathogenesis, tissue tropism and in vivo drug efficacy. IVIS requires the use of transgenic parasites expressing a florescent reporter. Developing a method to produce transgenic filarial parasites expressing a florescent reporter would permit IVIS to be applied to the study of tissue tropism and provide a non-invasive way to screen for in vivo drug efficacy against these parasites. METHODOLOGY/PRINCIPAL FINDINGS We report the development of a dual luciferase reporter construct in a piggyBac backbone that may be used to stably transfect Brugia malayi, a causative agent of human filariasis. Parasites transfected with this construct were visible in IVIS images obtained from infected gerbils. The signal in these infected animals increased dramatically when the transgenic parasites matured to the adult stage and began to produce transgenic progeny microfilaria. We demonstrate that the IVIS system can be used to develop an effective method for cryopreservation of transgenic parasites, to non-invasively monitor the effect of treatment with anti-filarial drugs, and to rapidly identify transgenic F1 microfilariae. CONCLUSIONS To our knowledge, this represents the first application of IVIS to the study of a human filarial parasite. This method should prove useful in studies of tissue tropism and as an efficient in vivo assay for candidate anti-filarial drugs.BACKGROUND Recent initiatives in psychiatry emphasize the utility of characterizing psychiatric symptoms in a multidimensional manner. However, strategies for applying standard self-report scales for multiaxial assessment have not been well-studied, particularly where the aim is to support both categorical and dimensional phenotypes. METHODS We propose a method for applying natural language processing to derive dimensional measures of psychiatric symptoms from questionnaire data. We utilized nine self-report symptom measures drawn from a large cellular biobanking study that enrolled individuals with mood and psychotic disorders, as well as healthy controls. To summarize questionnaire results we used word embeddings, a technique to represent words as numeric vectors preserving semantic and syntactic meaning. A low-dimensional approximation to the embedding space was used to derive the proposed succinct summary of symptom profiles. To validate our embedding-based disease profiles, these were compared to presence or absence of axis I diagnoses derived from structured clinical interview, and to objective neurocognitive testing. RESULTS Unsupervised and supervised classification to distinguish presence/absence of axis I disorders using survey-level embeddings remained discriminative, with area under the receiver operating characteristic curve up to 0.85, 95% confidence interval (CI) (0.74,0.91) using Gaussian mixture modeling, and cross-validated area under the receiver operating characteristic curve 0.91, 95% CI (0.88,0.94) using logistic regression. Derived symptom measures and estimated Research Domain Criteria scores also associated significantly with performance on neurocognitive tests. CONCLUSIONS Our results support the potential utility of deriving dimensional phenotypic measures in psychiatric illness through the use of word embeddings, while illustrating the challenges in identifying truly orthogonal dimensions.The Sm proteins are a conserved protein family with Sm motifs. The family includes Sm and Sm-like proteins, which play important roles in pre-mRNA splicing. Most research on the Sm proteins have been conducted in herbaceous plants, and less in woody plants such as Dimocarpus longan (longan). And the embryo development status significantly affects the quality and yield of longan. In this study, we conducted a genome-wide analysis of longan Sm genes (DlSm) to clarify their roles during somatic embryogenesis (SE) and identified 29 Sm genes. Phylogenetic analysis deduced longan Sm proteins clustered into 17 phylogenetic groups with the homologous Sm proteins of Arabidopsis thaliana. We also analyzed the gene structures, motif compositions, and conserved domains of the longan Sm proteins. The promoter sequences of the DlSm genes contained many light, endosperm development, hormone, and temperature response elements, which suggested their possible functions. In the non-embryogenic callus(NEC) and during early SE in longan, the alternative splicing(AS) events of DlSm genes indicated that these genes may influence SE development by changing gene structures and sequences. The kinetin(KT) hormone, and blue and white light treatments affected the differentiation and growth of longan embryonic callus(EC) probably by affecting the AS events of DlSm genes. Expression profiles showed the possible functional divergence among Sm genes, and different hormones and light qualities affected their expression levels. The expression trends of the DlSm genes determined by RNA sequencing as fragments per kilobase of exon model per million mapped reads (FPKM) and by real-time quantitative PCR(qRT-PCR) during early SE in longan showed that the expression of the DlSm genes was affected by the growth and differentiation of longan SE, and decreased as the somatic embryo differentiation progressed. The results will contributed to understanding the longan Sm gene family and provide a basis for future functional validation studies.Putting a name to a face is a highly common activity in our daily life that greatly enriches social interactions. Although this specific person-identity association becomes automatic with learning, it remains difficult and can easily be disrupted in normal circumstances or neurological conditions. To shed light on the neural basis of this important and yet poorly understood association between different input modalities in the human brain, we designed a crossmodal frequency-tagging paradigm coupled to brain activity recording via scalp and intracerebral electroencephalography. In Experiment 1, 12 participants were presented with variable pictures of faces and written names of a single famous identity at a 4-Hz frequency rate while performing an orthogonal task. Every 7 items, another famous identity appeared, either as a face or a name. Robust electrophysiological responses were found exactly at the frequency of identity change (i.e., 4 Hz / 7 = 0.571 Hz), suggesting a crossmodal neural response to person identity. In Experiment 2 with twenty participants, two control conditions with periodic changes of identity for faces or names only were added to estimate the contribution of unimodal neural activity to the putative crossmodal face-name responses. About 30% of the response occurring at the frequency of crossmodal identity change over the left occipito-temporal cortex could not be accounted for by the linear sum of unimodal responses. Finally, intracerebral recordings in the left ventral anterior temporal lobe (ATL) in 7 epileptic patients tested with this paradigm revealed a small number of "pure" crossmodal responses, i.e., with no response to changes of identity for faces or names only. Altogether, these observations provide evidence for integration of verbal and nonverbal person identity-specific information in the human brain, highlighting the contribution of the left ventral ATL in the automatic retrieval of face-name identity associations.Histological atlases of the cerebral cortex, such as those made famous by Brodmann and von Economo, are invaluable for understanding human brain microstructure and its relationship with functional organization in the brain. However, these existing atlases are limited to small numbers of manually annotated samples from a single cerebral hemisphere, measured from 2D histological sections. We present the first whole-brain quantitative 3D laminar atlas of the human cerebral cortex. It was derived from a 3D histological atlas of the human brain at 20-micrometer isotropic resolution (BigBrain), using a convolutional neural network to segment, automatically, the cortical layers in both hemispheres. Our approach overcomes many of the historical challenges with measurement of histological thickness in 2D, and the resultant laminar atlas provides an unprecedented level of precision and detail. We utilized this BigBrain cortical atlas to test whether previously reported thickness gradients, as measured by MRI in sensory and motor processing cortices, were present in a histological atlas of cortical thickness and which cortical layers were contributing to these gradients. Cortical thickness increased across sensory processing hierarchies, primarily driven by layers III, V, and VI. In contrast, motor-frontal cortices showed the opposite pattern, with decreases in total and pyramidal layer thickness from motor to frontal association cortices. These findings illustrate how this laminar atlas will provide a link between single-neuron morphology, mesoscale cortical layering, macroscopic cortical thickness, and, ultimately, functional neuroanatomy.Wolbachia are being used to reduce dengue transmission by Aedes aegypti mosquitoes around the world. To date releases have mostly involved Wolbachia strains with limited fitness effects but strains with larger fitness costs could be used to suppress mosquito populations. However, such infections are expected to evolve towards decreased deleterious effects. Here we investigate potential evolutionary changes in the wMelPop infection transferred from Drosophila melanogaster to Aedes aegypti more than ten years (~120 generations) ago. We show that most deleterious effects of this infection have persisted despite strong selection to ameliorate them. The wMelPop-PGYP infection is difficult to maintain in laboratory colonies, likely due to the persistent deleterious effects coupled with occasional maternal transmission leakage. Furthermore, female mosquitoes can be scored incorrectly as infected due to transmission of Wolbachia through mating. Infection loss in colonies was not associated with evolutionary changes in the nuclear background. These findings suggest that Wolbachia transinfections with deleterious effects may have stable phenotypes which could ensure their long-term effectiveness if released in natural populations to reduce population size.BACKGROUND Although frailty is a frequent occurrence in chronic obstructive pulmonary disease (COPD) patients, evidence on the frequency of frailty transition is scarce. AIMS The present study aimed to describe the frailty status transition rates over a 2-year period and their associated clinical outcomes in stable COPD patients, and to determine predictors of improvement in frailty status. METHODS We prospectively included 119 patients with stable COPD (mean age ± SD, 66.9 ± 7.9 years) over a follow-up period of 2 years. Frailty was assessed using the Fried criteria (unintentional weight loss, weakness, exhaustion, low activity level, and slow walking speed). Several demographic, clinical, and health-related variables were measured. We calculated the rates for each of the frailty transitions (no change, improvement, or worsening) between baseline and 2 years. selleck kinase inhibitor Outcomes were compared using one-way analysis of variance and predictors of improvement were identified in multivariate logistic regression. RESULTS After 2 years of follow-up, 21 (17.

Autoři článku: Hvidosborne7282 (Stender Owens)