Hvasscox0798
In zoos, primates experience markedly different interactions with familiar humans, such as the zookeepers who care for them, compared with those with unfamiliar humans, such as the large volume of zoo visitors to whom they are regularly exposed. While the behaviour of zoo-housed primates in the presence of unfamiliar, and to a lesser extent familiar, humans has received considerable attention, if and how they spontaneously distinguish familiar from unfamiliar people, and the cognitive mechanisms underlying the relationships they form with familiar and unfamiliar humans, remain poorly understood. Using a dot-probe paradigm, we assessed whether primates (chimpanzees and gorillas) show an attentional bias toward the faces of familiar humans, with whom the apes presumably had a positive relationship. Contrary to our predictions, all subjects showed a significant attentional bias toward unfamiliar people's faces compared with familiar people's faces when the faces showed a neutral expression, both with and without a surgical face mask on, but no significant attentional bias when the faces showed a surprised expression. These results demonstrate that apes can spontaneously categorize humans based on familiarity and we argue that the attentional biases the apes showed for unfamiliar human faces reflect a novelty effect.Insect wing polyphenism has evolved as an adaptation to changing environments and a growing body of research suggests that the nutrient-sensing insulin receptor signalling pathway is a hot spot for the evolution of polyphenisms, as it provides a direct link between growth and available nutrients in the environment. However, little is known about the potential role of insulin receptor signalling in polyphenisms which are controlled by seasonal variation in photoperiod. Here, we demonstrate that wing length polyphenism in the water strider Gerris buenoi is determined by photoperiod and nymphal density, but is not directly affected by nutrient availability. Exposure to a long-day photoperiod is highly inducive of the short-winged morph whereas high nymphal densities moderately promote the development of long wings. Using RNA interference we demonstrate that, unlike in several other species where wing polyphenism is controlled by nutrition, there is no detectable role of insulin receptor signalling in wing morph induction. Our results indicate that the multitude of possible cues that trigger wing polyphenism can be mediated through different genetic pathways and that there are multiple genetic origins to wing polyphenism in insects.Aquatic insect species that leave the water after larval development, such as mayflies, have to deal with extremely different visual environments in their different life stages. Measuring the spectral sensitivity of the compound eyes of the virgin mayfly (Ephoron virgo) resulted in differences between the sensitivity of adults and larvae. Larvae were primarily green-, while adults were mostly UV-sensitive. The sensitivity of adults and larvae was the same in the UV, but in the green spectral range, adults were 3.3 times less sensitive than larvae. Transmittance spectrum measurements of larval skins covering the eye showed that the removal of exuvium during emergence cannot explain the spectral sensitivity change of the eyes. Taking numerous sky spectra from the literature, the ratio of UV and green photons in the skylight was shown to be maximal for θ ≈ -13° solar elevation, which is in the θmin = -14.7° and θmax = -7.1° typical range of swarming that was established from webcam images of real swarmings. We suggest that the spectral sensitivity of both the larval and adult eyes are adapted to the optical environment of the corresponding life stages.While nonlinear phenomena (NLP) are widely reported in animal vocalizations, often causing perceptual harshness and roughness, their communicative function remains debated. Several hypotheses have been put forward attention-grabbing, communication of distress, exaggeration of body size and dominance. Here, we use state-of-the-art sound synthesis to investigate how NLP affect the perception of puppy whines by human listeners. Listeners assessed the distress, size or dominance conveyed by synthetic puppy whines with manipulated NLP, including frequency jumps and varying proportions of subharmonics, sidebands and deterministic chaos. We found that the presence of chaos increased the puppy's perceived level of distress and that this effect held across a range of representative fundamental frequency (fo) levels. Adding sidebands and subharmonics also increased perceived distress among listeners who have extensive caregiving experience with pre-weaned puppies (e.g. breeders, veterinarians). Finally, we found that whines with added chaos, subharmonics or sidebands were associated with larger and more dominant puppies, although these biases were attenuated in experienced caregivers. Together, our results show that nonlinear phenomena in puppy whines can convey rich information to human listeners and therefore may be crucial for offspring survival during breeding of a domesticated species.Evolutionary theory predicts that organismal plasticity should evolve in environments that fluctuate regularly. However, in environments that fluctuate less predictably, plasticity may be constrained because environmental cues become less reliable for expressing the optimum phenotype. Here, we examine how the predictability of +5°C temperature fluctuations impacts the phenotype of the marine diatom Thalassiosira pseudonana. Thermal regimes were informed by temperatures experienced by microbes in an ocean simulation and featured regular or irregular temporal sequences of fluctuations that induced mild physiological stress. Physiological traits (growth, cell size, complexity and pigmentation) were quantified at the individual cell level using flow cytometry. Changes in cellular complexity emerged as the first impact of predictability after only 8-11 days, followed by deleterious impacts on growth on days 13-16. Specifically, cells with a history of irregular fluctuation exposure exhibited a 50% reduction in growth compared with the stable reference environment, while growth was 3-18 times higher when fluctuations were regular. We observed no evidence of heat hardening (increasingly positive growth) with recurrent fluctuations. This study demonstrates that unpredictable temperature fluctuations impact this cosmopolitan diatom under ecologically relevant time frames, suggesting shifts in environmental stochasticity under a changing climate could have widespread consequences among ocean primary producers.In the face of a growing human footprint, understanding interactions among threatened large carnivores is fundamental to effectively mitigating anthropogenic threats and managing species. Using data from a large-scale camera trap survey, we investigated the effects of environmental and anthropogenic variables on the interspecific interaction of a carnivore guild comprising of tiger, leopard and dhole in Bhutan. We demonstrate the complex effects of human settlement density on large carnivore interactions. Specifically, we demonstrate that leopard-dhole co-occupancy probability was higher in areas with higher human settlement density. The opposite was true for tiger-leopard co-occupancy probability, but it was positively affected by large prey (gaur) abundance. These findings suggest that multi-carnivore communities across land-use gradients are spatially structured and mediated also by human presence and/or the availability of natural prey. Our findings show that space-use patterns are driven by a combination of the behavioural mechanism of each species and its interactions with competing species. The duality of the effect of settlement density on species interactions suggests that the benefits of exploiting anthropogenic environments are a trade-off between ecological opportunity (food subsidies or easy prey) and the risk of escalating conflict with humans.The collection of caterpillar fungus accounts for 50-70% of the household income of thousands of Himalayan communities and has an estimated market value of $5-11 billion across Asia. However, Himalayan collectors are at multiple economic disadvantages compared with collectors on the Tibetan Plateau because their product is not legally recognized. Using a customized hybrid-enrichment probe set and market-grade caterpillar fungus (with samples up to 30 years old) from 94 production zones across Asia, we uncovered clear geography-based signatures of historical dispersal and significant isolation-by-distance among caterpillar fungus hosts. This high-throughput approach can readily distinguish samples from major production zones with definitive geographical resolution, especially for samples from the Himalayan region that form monophyletic clades in our analysis. Based on these results, we propose a two-step procedure to help local communities authenticate their produce and improve this multi-national trade-route without creating opportunities for illegal exports and other forms of economic exploitation. We argue that policymakers and conservation practitioners must encourage the fair trade of caterpillar fungus in addition to sustainable harvesting to support a trans-boundary conservation effort that is much needed for this natural commodity in the Himalayan region.
Wearing a surgical mask in hospitalized patients has become recommended during care, including rehabilitation, to mitigate coronavirus disease 2019 (COVID-19) transmission. However, the mask may increase dyspnoea and raise concerns in promoting rehabilitation activities in post-acute COVID-19 patients.
To evaluate the impact of the surgical mask on dyspnoea, exercise performance and cardiorespiratory response during a 1-min sit-to-stand test in hospitalized COVID-19 patients close to discharge.
COVID-19 patients whose hospital discharge has been planned the following day performed in randomized order two sit-to-stand tests with or without a surgical mask. Outcome measures were recorded before, at the end, and after two minutes of recovery of each test. SU11274 Dyspnoea (modified Borg scale), cardiorespiratory parameters and sit-to-stand repetitions were measured.
Twenty-eight patients aged 52 ± 10 years were recruited. Compared to unmasked condition, dyspnoea was significantly higher with the mask before and wearing a surgical facemask during physical or rehabilitation activities is safe. These data may also mitigate fears to refer these patients in rehabilitation centres where mask-wearing has become mandatory.Aim New parameters are emerging to predict prognosis in patients with ST-segment elevation myocardial infarction (STEMI). In this study we aimed to determine and compare the prognostic values of some metabolic indices in terms of predicting long-term mortality in patients with STEMI. Method A total of 1900 nondiabetic patients who presented with STEMI and underwent percutaneous coronary intervention were included in the study. Multivariable Cox proportional regression analysis was used to determine and compare the predictive performance of triglyceride-glucose (TyG) index, triglyceride-high-density lipoprotein ratio (Ty/HDL) and admission glucose. Results In multivariable Cox regression analysis, the model based on TyG index had better predictive performance than the Ty/HDL and admission blood glucose. Conclusion The TyG index is more informative than Ty/HDL and admission glucose level to predict long-term all-cause mortality.