Huupton8769
Building an interactive environment during learning experience is sometimes hindered by student numbers in class, their sociocultural differences and limited teaching time, which may reduce student engagement. In this study we provided a super blended teaching and learning model by hybridising Classroom Response System (CRS) with Flipped Classroom (FC) and Team-Based Learning (TBL). CRS allowed learners to use their smart devices (e.g., phones, tablets and laptops) to respond to a variety of numerical, multiple-choice, short-answer and open ended questions posed during live classes and encouraged them to engage with classroom activities. Our Flipped-CRS (F-CRS) approach required the students to preview the e-learning material and watch the recorded lectures before the sessions and apply their knowledge within the session, either individually or as teams, by answering questions using TurningPoint CRS software. learn more provided positive feedback regarding F-CRS and the application of super blended teaching and learning model demonstrated a substantial increase in student collaboration and enhanced their motivation, engagement, attendance and academic performance, especially while using F-CRS approach in teams. Our super blended approach enabled educators to monitor student engagement throughout the year, facilitated formative assessment and assisted teachers to create crude class performance prediction in summative assessments.Ischemia reperfusion injury (IRI) during liver transplantation increases morbidity and contributes to allograft dysfunction. There are no therapeutic strategies to mitigate IRI. We examined a novel hypothesis caspase 1 and caspase 11 serve as danger-associated molecular pattern (DAMPs) sensors in IRI. By performing microarray analysis and using caspase 1/caspase 11 double-knockout (Casp DKO) mice, we show that the canonical and non-canonical inflammasome regulators are upregulated in mouse liver IRI. Ischemic pre (IPC)- and post-conditioning (IPO) induce upregulation of the canonical and non-canonical inflammasome regulators. Trained immunity (TI) regulators are upregulated in IPC and IPO. Furthermore, caspase 1 is activated during liver IRI, and Casp DKO attenuates liver IRI. Casp DKO maintained normal liver histology via decreased DNA damage. Finally, the decreased TUNEL assay-detected DNA damage is the underlying histopathological and molecular mechanisms of attenuated liver pyroptosis and IRI. In summary, liver IRI induces the upregulation of canonical and non-canonical inflammasomes and TI enzyme pathways. Casp DKO attenuate liver IRI. Development of novel therapeutics targeting caspase 1/caspase 11 and TI may help mitigate injury secondary to IRI. Our findings have provided novel insights on the roles of caspase 1, caspase 11, and inflammasome in sensing IRI derived DAMPs and TI-promoted IRI-induced liver injury.There have been abundant experimental studies exploring ultra-high-performance concrete (UHPC) in recent years. However, the relationships between the engineering properties of UHPC and its mixture composition are highly nonlinear and difficult to delineate using traditional statistical methods. There is a need for robust and advanced methods that can streamline the diverse pertinent experimental data available to create predictive tools with superior accuracy and provide insight into its nonlinear materials science aspects. Machine learning is a powerful tool that can unravel underlying patterns in complex data. Accordingly, this study endeavors to employ state-of-the-art machine learning techniques to predict the compressive strength of UHPC using a comprehensive experimental database retrieved from the open literature consisting of 810 test observations and 15 input features. A novel approach based on tabular generative adversarial networks was used to generate 6513 plausible synthetic data for training robust machine learning models, including random forest, extra trees, and gradient boosting regression. While the models were trained using the synthetic data, their ability to generalize their predictions was tested on the 810 experimental data thus far unknown and never presented to the models. The results indicate that the developed models achieved outstanding predictive performance. Parametric studies using the models were able to provide insight into the strength development mechanisms of UHPC and the significance of the various influential parameters.Tumor genomic profiling has a dramatic impact on the selection of targeted treatment and for the identification of resistance mechanisms at the time of progression. Solid tissue biopsies are sometimes challenging, and liquid biopsies are used as a non-invasive alternative when tissue is limiting. The clinical relevance of tumor genotyping through analysis of ctDNA is now widely recognized at all steps of the clinical evaluation process in metastatic non-small cell lung cancer (NSCLC) patients. ctDNA analysis through liquid biopsy has recently gained increasing attention as well in the management of early and locally advanced, not oncogene-addicted, NSCLC. Its potential applications in early disease detection and the response evaluation to radical treatments are promising. The aim of this review is to summarize the landscape of liquid biopsies in clinical practice and also to provide an overview of the potential perspectives of development focusing on early detection and screening, the assessment of minimal residual disease, and its potential role in predicting response to immunotherapy. In addition to available studies demonstrating the clinical relevance of liquid biopsies, there is a need for standardization and well-designed clinical trials to demonstrate its clinical utility.Vitamin D status may be important for stress resilience. This study investigated the effects of vitamin D supplements during winter on biological markers of stress resilience such as psychophysiological activity, serotonin, and cortisol in a placebo-controlled, randomized clinical trial. Eighty-six participants were randomly assigned to the Intervention (vitamin D) or Control (placebo) groups. Before and after the intervention participants were exposed to an experimental stress procedure. #link# Psychophysiological activity was measured during three main conditions baseline, stress, and recovery. Fasting blood samples were taken in the morning and saliva samples were collected at seven different time points across 24 h. Prior to intervention both groups had normal/sufficient vitamin D levels. Both groups showed a normal pattern of psychophysiological responses to the experimental stress procedure (i.e., increased psychophysiological responses from resting baseline to stress-condition, and decreased psychophysiological responses from stress-condition to recovery; all p less then 0.009). link2 Post-intervention, the Intervention group showed increased vitamin D levels (p less then 0.001) and normal psychophysiological responses to the experimental stress procedure (p less then 0.001). Importantly, the Control group demonstrated a classic nadir in vitamin D status post-intervention (spring) (p less then 0.001) and did not show normal psychophysiological responses. Thus, physiologically the Control group showed a sustained stress response. No significant effects of vitamin D were found on serotonin and cortisol.African swine fever (ASF) causes huge economic losses and is one of most dangerous diseases of pigs. The disease is known for almost 100 years, an effective vaccine or treatment is still unavailable, only proper biosecurity measures, including disinfection, are being applied, in order to prevent disease outbreaks. Eight active substances, i.e., formaldehyde, sodium hypochlorite, caustic soda, glutaraldehyde, phenol, benzalkonium chloride, potassium peroxymonosulfate and acetic acid, were tested, in order to confirm their effectiveness against African swine fever virus (ASFV). This specific selection was done based on the World Organisation for Animal Health (OIE)'s recommendation and previous disinfectant studies on surfaces. The result of our study shows that most of them inactivate the virus, in recommended concentrations. In order to reduce the cytotoxicity of the four substances, Microspin S-400 HR columns were applied, therefore making it possible to demonstrate four logarithms virus titer reduction. Sodium hypochlorite, glutaraldehyde, caustic soda and potassium peroxymonosulfate showed the best ASFV inactivation rates, achieving titer reductions over 5 logs. Despite microfiltration, the virucidal activity of formaldehyde was not assessable, due to its high cytotoxicity. Our results showed that cleaning is particularly important, because removal of the soiling provides improved effectiveness of the tested chemical compounds.Due to its immunomodulatory effects and the limitation in the radiological damage progression, disease-modifying antirheumatic drugs (DMARDs) work as first-line rheumatoid arthritis (RA) treatment. In recent years, numerous research projects have suggested that the metabolism of DMARDs could have a role in gut dysbiosis, which indicates that the microbiota variability could modify the employment of direct and indirect mechanisms in the response to treatment. The main objective of this review was to understand the gut microbiota bacterial variability in patients with RA, pre and post-treatment with DMARDs, and to identify the possible mechanisms through which microbiota can regulate the response to pharmacological therapy.Autophagy, a bulk degradation process within eukaryotic cells, is responsible for cellular turnover and nutrient liberation during starvation. Increasing evidence indicate that this process can be extremely discerning. Selective autophagy segregates and eliminates protein aggregates, damaged organelles, and invading organisms. The specificity of this process is largely mediated by post-translational modifications (PTMs), which are recognized by autophagy receptors. link3 These receptors grant autophagy surgical precision in cargo selection, where only tagged substrates are engulfed within autophagosomes and delivered to the lysosome for proteolytic breakdown. A growing number of selective autophagy receptors have emerged including p62, NBR1, OPTN, NDP52, TAX1BP1, TOLLIP, and more continue to be uncovered. The most well-documented PTM is ubiquitination and selective autophagy receptors are equipped with a ubiquitin binding domain and an LC3 interacting region which allows them to physically bridge cargo to autophagosomes. Here, we review the role of ubiquitin and ubiquitin-like post-translational modifications in various types of selective autophagy.This paper presents a novel design of a Multiple Input Multiple Output (MIMO) antenna system for next generation sub 6 GHz 5G and beyond mobile terminals. The proposed system is composed of a main board and two side boards. To make the design cost-effective, FR4 is used as a substrate. The design is based on a unit monopole antenna etched at the side substrate. The single element is resonating at 3.5 GHz attaining a 10 dB bandwidth of 200 MHz and a 6 dB bandwidth of 400 MHz. The single element is then transformed into an MIMO array of 8-elements with an overall dimension of 150 mm × 75 mm × 7 mm, providing pattern diversity characteristics and isolation better than -12 dB for any two radiating elements. A number of studies such as effects of human hand on the system that includes single hand mode and dual mode scenarios and the effects of Liquid Crystal Display (LCD) over the principal performance parameters of the system are presented. The envelop correlation coefficient (ECC) is computed for all the scenarios and it is found that ECC is less than 0.