Husseinmcguire7372

Z Iurium Wiki

This paper presents an automatic algorithm for the detection of respiratory events in patients using electrocardiogram (ECG) and respiratory signals. The proposed method was developed using data of polysomnogram (PSG) and those recorded from a patch-type device. In total, data of 1,285 subjects were used for algorithm development and evaluation. The proposed method involved respiratory event detection and apnea-hypopnea index (AHI) estimation. Handcrafted features from the ECG and respiratory signals were applied to machine learning algorithms including linear discriminant analysis, quadratic discriminant analysis, random forest, multi-layer perceptron, and the support vector machine (SVM). High performance was demonstrated when using SVM, where the overall accuracy achieved was 83% and the Cohens kappa was 0.53 for the minute-by-minute respiratory event detection. The correlation coefficient between the reference AHI obtained using the PSG and estimated AHI as per the proposed method was 0.87. Furthermore, patient classification based on an AHI cutoff of 15 showed an accuracy of 87% and a Cohens kappa of 0.72. The proposed method increases performance result, as it records the ECG and respiratory signals simultaneously. Overall, it can be used to lower the development cost of commercial software owing to the use of open datasets.Spiking neural networks (SNNs) represent the most prominent biologically inspired computing model for neuromorphic computing (NC) architectures. However, due to the nondifferentiable nature of spiking neuronal functions, the standard error backpropagation algorithm is not directly applicable to SNNs. In this work, we propose a tandem learning framework that consists of an SNN and an artificial neural network (ANN) coupled through weight sharing. The ANN is an auxiliary structure that facilitates the error backpropagation for the training of the SNN at the spike-train level. To this end, we consider the spike count as the discrete neural representation in the SNN and design an ANN neuronal activation function that can effectively approximate the spike count of the coupled SNN. The proposed tandem learning rule demonstrates competitive pattern recognition and regression capabilities on both the conventional frame- and event-based vision datasets, with at least an order of magnitude reduced inference time and total synaptic operations over other state-of-the-art SNN implementations. Therefore, the proposed tandem learning rule offers a novel solution to training efficient, low latency, and high-accuracy deep SNNs with low computing resources.The goal of supervised hashing is to construct hash mappings from collections of images and semantic annotations such that semantically relevant images are embedded nearby in the learned binary hash representations. Existing deep supervised hashing approaches that employ classification frameworks with a classification training objective for learning hash codes often encode class labels as one-hot or multi-hot vectors. We argue that such label encodings do not well reflect semantic relations among classes and instead, effective class label representations ought to be learned from data, which could provide more discriminative signals for hashing. In this article, we introduce Adaptive Labeling Deep Hashing (AdaLabelHash) that learns binary hash codes based on learnable class label representations. We treat the class labels as the vertices of a K-dimensional hypercube, which are trainable variables and adapted together with network weights during the backward network training procedure. The label representations, referred to as codewords, are the target outputs of hash mapping learning. In the label space, semantically relevant images are then expressed by the codewords that are nearby regarding Hamming distances, yielding compact and discriminative binary hash representations. Furthermore, we find that the learned label representations well reflect semantic relations. Our approach is easy to realize and can simultaneously construct both the label representations and the compact binary embeddings. Quantitative and qualitative evaluations on several popular benchmarks validate the superiority of AdaLabelHash in learning effective binary codes for image search.Abnormal behaviors in industrial systems may be early warnings on critical events that may cause severe damages to facilities and security. Thus, it is important to detect abnormal behaviors accurately and timely. However, the anomaly detection problem is hard to solve in practice, mainly due to the rareness and the expensive cost to get the labels of the anomalies. Deep generative models parameterized by neural networks have achieved state-of-the-art performance in practice for many unsupervised and semisupervised learning tasks. We present a new deep generative model, Latent Enhanced regression/classification Deep Generative Model (LEDGM), for the anomaly detection problem with multidimensional data. https://www.selleckchem.com/products/680c91.html Instead of using two-stage decoupled models, we adopt an end-to-end learning paradigm. Instead of conditioning the latent on the class label, LEDGM conditions the label prediction on the learned latent so that the optimization goal is more in favor of better anomaly detection than better reconstruction that the previously proposed deep generative models have been trained for. Experimental results on several synthetic and real-world small- and large-scale datasets demonstrate that LEDGM can achieve improved anomaly detection performance on multidimensional data with very sparse labels. The results also suggest that both labeled anomalies and labeled normal are valuable for semisupervised learning. Generally, our results show that better performance can be achieved with more labeled data. The ablation experiments show that both the original input and the learned latent provide meaningful information for LEDGM to achieve high performance.Generally, the infinity-norm joint-velocity minimization (INVM) of physically constrained kinematically redundant robots can be formulated as time-variant linear programming (TVLP) with equality and inequality constraints. Zeroing neural network (ZNN) is an effective neural method for solving equality-constrained TVLP. For inequality-constrained TVLP, however, existing ZNNs become incompetent due to the lack of relevant derivative information and the inability to handle inequality constraints. Currently, there is no capable ZNN in the literature that has achieved the INVM of redundant robots under joint limits. To fill this gap, a classical INVM scheme is first introduced in this article. Then, a new joint-limit handling technique is proposed and employed to convert the INVM scheme into a unified TVLP with full derivative information. By using a perturbed Fisher-Burmeister function, the TVLP is further converted into a nonlinear equation. These conversion techniques lay a foundation for the success of designing a capable ZNN. To solve the nonlinear equation and the TVLP, a novel continuous-time ZNN (CTZNN) is designed and its corresponding discrete-time ZNN (DTZNN) is established using an extrapolated backward differentiation formula. Theoretical analysis is rigorously conducted to prove the convergence of the neural approach. Numerical studies are performed by comparing the DTZNN solver and the state-of-the-art (SOTA) linear programming (LP) solvers. Comparative results show that the DTZNN consumes the least computing time and can be a powerful alternative to the SOTA solvers. The DTZNN and the INVM scheme are finally applied to control two kinematically redundant robots. Both simulative and experimental results show that the robots successfully accomplish user-specified path-tracking tasks, verifying the effectiveness and practicability of the proposed neural approach and the INVM scheme equipped with the new joint-limit handling technique.The goal of multi-view clustering is to partition samples into different subsets according to their diverse features. Previous multi-view clustering methods mainly exist two forms multi-view spectral clustering and multi-view matrix factorization. Although they have shown excellent performance in many occasions, there are still many disadvantages. For example, multi-view spectral clustering usually needs to perform postprocessing. Multi-view matrix factorization directly decomposes the original data features. When the size of features is large, it encounters the expensive time consumption to decompose these data features thoroughly. Therefore, we proposed a novel multi-view clustering approach. The main advantages include the following three aspects 1) it searches for a common joint graph across multiple views, which fully explores the hidden structure information by utilizing the compatibility among views; 2) the introduced nonnegative constraint manipulates that the final clustering results can be directly obtained; and 3) straightforwardly decomposing the similarity matrix can transform the eigenvalue factorization in spectral clustering with computational complexity O(n³) into the singular value decomposition (SVD) with O(nc²) time cost, where n and c, respectively, denote the numbers of samples and classes. Thus, the computational efficiency can be improved. Moreover, in order to learn a better clustering model, we set that the constructed similarity graph approximates each view affinity graph as close as possible by adding the constraint as the initial affinity matrices own. Furthermore, substantial experiments are conducted, which verifies the superiority of the proposed two clustering methods comparing with single-view clustering approaches and state-of-the-art multi-view clustering methods.Classification methods for streaming data are not new, but very few current frameworks address all three of the most common problems with these tasks concept drift, noise, and the exorbitant costs associated with labeling the unlabeled instances in data streams. Motivated by this gap in the field, we developed an active learning framework based on a dual-query strategy and Ebbinghaus's law of human memory cognition. Called CogDQS, the query strategy samples only the most representative instances for manual annotation based on local density and uncertainty, thus significantly reducing the cost of labeling. The policy for discerning drift from noise and replacing outdated instances with new concepts is based on the three criteria of the Ebbinghaus forgetting curve recall, the fading period, and the memory strength. Simulations comparing CogDQS with baselines on six different data streams containing gradual drift or abrupt drift with and without noise show that our approach produces accurate, stable models with good generalization ability at minimal labeling, storage, and computation costs.Clustering single-cell RNA sequence (scRNA-seq) data poses statistical and computational challenges due to their high-dimensionality and data-sparsity, also known as 'dropout' events. Recently, Regularized Auto-Encoder (RAE) based deep neural network models have achieved remarkable success in learning robust low-dimensional representations. The basic idea in RAEs is to learn a non-linear mapping from the high-dimensional data space to a low-dimensional latent space and vice-versa, simultaneously imposing a distributional prior on the latent space, which brings in a regularization effect. This paper argues that RAEs suffer from the infamous problem of bias-variance trade-off in their naive formulation. While a simple AE without a latent regularization results in data over-fitting, a very strong prior leads to under-representation and thus bad clustering. To address the above issues, we propose a modified RAE framework (called the scRAE) for effective clustering of the single-cell RNA sequencing data. scRAE consists of deterministic AE with a flexibly learnable prior generator network, which is jointly trained with the AE.

Autoři článku: Husseinmcguire7372 (Boysen Gauthier)