Hussaintherkildsen7721
This study provides markers for future research of the molecular responses of B. cinerea to benzothiazole stress.Anthracnose is a destructive disease of alfalfa (Medicago sativa L.) that causes severe yield losses. Biological control can be an effective and eco-friendly approach to control this alfalfa disease. In the present study, Bacillus amyloliquefaciens LYZ69, previously isolated from healthy alfalfa roots, showed a strong in vitro antifungal activity against Colletotrichum truncatum, an important causal agent of anthracnose of alfalfa. The strain LYZ69 protected alfalfa plants (biocontrol efficacy of 82.59%) from anthracnose under greenhouse conditions. The cell-free culture (CFC) of LYZ69 (20%; v/v) caused 60% and 100% inhibition of mycelial growth and conidial germination, respectively. High-performance liquid chromatography tandem mass spectrometry (LC-MS/MS) separated and identified cyclic lipopeptides (LPs) such as bacillomycin D and fengycin in the CFC of LYZ69. Light microscopy and scanning electron microscopy (SEM) revealed that the mixture of cyclic LPs produced by LYZ69 caused drastic changes in mycelial morphology. Fluorescence microscopy showed that the LPs induced reactive oxygen species (ROS) accumulation and caused apoptosis-like cell death in C. truncatum hyphae. In summary, our findings provide evidence to support B. amyloliquefaciens LYZ69 as a promising candidate for the biological control of anthracnose in alfalfa.Pulsed laser postprocessing (PLPP) of colloidal nanoparticles and related laser fragmentation in liquid (LFL) using a liquid jet setup have become an acknowledged tool to reduce the nanoparticle diameter down to a few nanometers, alter the crystal phase, or increase the defect density under high-purity and continuous-flow conditions. In recent studies on LFL that were conducted with a cylindrical liquid jet, intensity gradients and related incomplete illumination of the volume element passing through the laser beam path were reported to cause a broadening of the product particle size distribution, melting, and phase segregation. In this paper, we present a new flat jet design, which reduces the deviation of the laser intensity up to 10 times compared to the conventional cylindrical liquid jet. The experimental threshold intensity for gold nanoparticle fragmentation found with the cylindrical setup strongly deviates from the theoretical prediction, while they are in very good agreement for the flat jet setup. Additionally, a narrow product size fraction of 3 ± 2 nm was found for the flat jet, while the main product fraction gained from the cylindrical jet was 10 ± 8 nm in size under the same conditions. Consequently, the flat jet setup allows us not only to study laser fragmentation mechanisms with higher precision but also to gain product particles with narrow particle size distribution at single pulse per particle conditions even at elevated mass concentrations (>50 mg L-1). In future studies, these promising results also render the flat jet setup relevant for the other disciplines of PLPP such as laser melting and defect engineering.A novel copper-catalyzed intermolecular aminoalkynylation of alkenes through a radical relay process has been developed in this work, in which N-fluoro-N-alkylsulfonamides (NFASs) are used as nitrogen-centered radical precursors and alkynyltrimethoxysilanes as alkynylating reagents. see more This method presents an efficient and straightforward approach to various enantioenriched 2-alkynyl-2-arylethylamines in good yields with excellent enantioselectivity, and these products can be readily converted into a series of synthetically useful chiral terminal alkynes, allenes, alkenes, amines, amino acids, and N-heterocycles.Block copolymer nanoparticles prepared via polymerization-induced self-assembly (PISA) represent an emerging class of organic Pickering emulsifiers. Such nanoparticles are readily prepared by chain-extending a soluble homopolymer precursor using a carefully selected second monomer that forms an insoluble block in the chosen solvent. As the second block grows, it undergoes phase separation that drives in situ self-assembly to form sterically stabilized nanoparticles. Conducting such PISA syntheses in aqueous solution leads to hydrophilic nanoparticles that enable the formation of oil-in-water emulsions. Alternatively, hydrophobic nanoparticles can be prepared in non-polar media (e.g., n-alkanes), which enables water-in-oil emulsions to be produced. In this review, the specific advantages of using PISA to prepare such bespoke Pickering emulsifiers are highlighted, which include fine control over particle size, copolymer morphology, and surface wettability. This has enabled various fundamental scientific questions regarding Pickering emulsions to be addressed. Moreover, block copolymer nanoparticles can be used to prepare Pickering emulsions over various length scales, with mean droplet diameters ranging from millimeters to less than 200 nm.The vigorous development of two-dimensional materials puts forward higher requirements for more effective modulation of physical properties. Here, we utilize simple treatments for the emerging graphdiyne (GDY) materials to achieve dual control of magnetic and electrical properties through Fe/N codoping. The as-prepared Fe-N-GDY is confirmed as a highly conductive ferromagnetic semiconductor. The Curie temperature close to 205 K endows the materials promising application prospects in spin-related devices. Benefiting from uniform Fe/N comodification and performance optimization, such material could be used as carbon-based conductive ink for printed devices, such as a printed field-effect transistor (FET), which achieves a high mobility of 215 cm2 V-1 s-1. Even when printing Fe-N-GDY ink to assemble flexible FETs with an ionic liquid gate, the excellent transfer characteristics can be maintained and demonstrate stability with temperature. Those results provide a facile way to modulate GDY's properties and promote its application potential in large-area, multifunctional integrated electronic devices, including wearable devices.