Hussainkerr0759
The development of real-time 3D sensing devices and algorithms (e.g., multiview capturing systems, Time-of-Flight depth cameras, LIDAR sensors), as well as the widespreading of enhanced user applications processing 3D data, have motivated the investigation of innovative and effective coding strategies for 3D point clouds. Several compression algorithms, as well as some standardization efforts, has been proposed in order to achieve high compression ratios and flexibility at a reasonable computational cost. This paper presents a transform-based coding strategy for dynamic point clouds that combines a non-linear transform for geometric data with a linear transform for color data; both operations are region-adaptive in order to fit the characteristics of the input 3D data. Temporal redundancy is exploited both in the adaptation of the designed transform and in predicting the attributes at the current instant from the previous ones. Experimental results showed that the proposed solution obtained a significant bit rate reduction in lossless geometry coding and an improved rate-distortion performance in the lossy coding of color components with respect to state-of-the-art strategies.Most existing object detection models are restricted to detecting objects from previously seen categories, an approach that tends to become infeasible for rare or novel concepts. Accordingly, in this paper, we explore object detection in the context of zero-shot learning, i.e., Zero-Shot Object Detection (ZSD), to concurrently recognize and localize objects from novel concepts. Existing ZSD algorithms are typically based on a simple mapping-transfer strategy that is susceptible to the domain shift problem. To resolve this problem, we propose a novel Semantics-Preserving Graph Propagation model for ZSD based on Graph Convolutional Networks (GCN). More specifically, we employ a graph construction module to flexibly build category graphs by incorporating diverse correlations between category nodes; this is followed by two semantics preserving modules that enhance both category and region representations through a multi-step graph propagation process. Compared to existing mapping-transfer based methods, both the semantic description and semantic structural knowledge exhibited in prior category graphs can be effectively leveraged to boost the generalization capability of the learned projection function via knowledge transfer, thereby providing a solution to the domain shift problem. Experiments on existing seen/unseen splits of three popular object detection datasets demonstrate that the proposed approach performs favorably against state-of-the-art ZSD methods.Existing hashing methods have yielded significant performance in image and multimedia retrieval, which can be categorized into two groups shallow hashing and deep hashing. read more However, there still exist some intrinsic limitations among them. The former generally adopts a one-step strategy to learn the hashing codes for discovering the discriminative binary feature, but the latent discriminative information in the learned hashing codes is not well exploited. The latter, as deep neural network based hashing models, can learn highly discriminative and compact features, but relies on large-scale data and computation resources for numerous network parameters tuning with back-propagation optimization. Straightforward training of deep hashing models from scratch on small-scale data is almost impossible. Therefore, in order to develop efficient but effective learning to hash algorithm that depends only on small-scale data, we propose a novel non-neural network based deep-like learning framework, i.e. multi-level cascaded hashing (MCH) approach with hierarchical learning strategy, for image retrieval. The contributions are threefold. First, a hashing-in-hash architecture is designed in MCH, which inherits the excellent traits of traditional neural networks based deep learning, such that discriminative binary features that are beneficial to image retrieval can be effectively captured. Second, in each level the binary features of all preceding levels and the visual appearance feature are simultaneously cascaded as inputs of all subsequent levels to retrain, which fully exploits the implicated discriminative information. Third, a basic learning to hash (BLH) model with label constraint is proposed for hierarchical learning. Without loss of generality, the existing hashing models can be easily integrated into our MCH framework. We show experimentally on small- and large-scale visual retrieval tasks that our method outperforms several state-of-the-arts.The ability to synthesize multi-modality data is highly desirable for many computer-aided medical applications, e.g. clinical diagnosis and neuroscience research, since rich imaging cohorts offer diverse and complementary information unraveling human tissues. However, collecting acquisitions can be limited by adversary factors such as patient discomfort, expensive cost and scanner unavailability. In this paper, we propose a multi-task coherent modality transferable GAN (MCMT-GAN) to address this issue for brain MRI synthesis in an unsupervised manner. Through combining the bidirectional adversarial loss, cycle-consistency loss, domain adapted loss and manifold regularization in a volumetric space, MCMT-GAN is robust for multi-modality brain image synthesis with visually high fidelity. In addition, we complement discriminators collaboratively working with segmentors which ensure the usefulness of our results to segmentation task. Experiments evaluated on various cross-modality synthesis show that our method produces visually impressive results with substitutability for clinical post-processing and also exceeds the state-of-the-art methods.Salient object detection aims at locating the most conspicuous objects in natural images, which usually acts as a very important pre-processing procedure in many computer vision tasks. In this paper, we propose a simple yet effective Hierarchical U-shape Attention Network (HUAN) to learn a robust mapping function for salient object detection. Firstly, a novel attention mechanism is formulated to improve the well-known U-shape network [1], in which the memory consumption can be extensively reduced and the mask quality can be significantly improved by the resulting U-shape Attention Network (UAN). Secondly, a novel hierarchical structure is constructed to well bridge the low-level and high-level feature representations between different UANs, in which both the intra-network and inter-network connections are considered to explore the salient patterns from a local to global view. Thirdly, a novel Mask Fusion Network (MFN) is designed to fuse the intermediate prediction results, so as to generate a salient mask which is in higher-quality than any of those inputs.