Humphriestoft7407
In our major examples only 1-2 percent of the loci are over-dominant for fitness, but they still account for practically all dominance variance in fitness as well as all contributions to the G-matrix. These analyses show that the structure of the G-matrix reveals important information about the contribution of different traits to fitness.Calcium (Ca2+) regulates many cellular and physiological processes from development to reproduction. Ca2+ is also an important factor in the metabolism of lipids, the primary energy source used during insect starvation and diapause. Ca2+ signaling proteins bind to Ca2+ and maintain intracellular Ca2+ levels. However, knowledge about Ca2+ signaling proteins is mostly restricted to the model Drosophila melanogaster and the response of Ca2+ signaling genes to starvation or diapause is not known. In this study, we identified three Ca2+ signaling proteins; the primary Ca2+ binding protein Calmodulin (LdCaM), phosphatase Calcineurin B (LdCaNB), and the senescence marker protein Regucalcin (LdRgN), from the fat body of the Colorado Potato Beetle, Leptinotarsa decemlineata (Coleoptera Chrysomelidae). This insect is a major pest of potato worldwide and overwinters under hibernation diapause as adults while utilizing lipids as the primary energy source. Putative EF-hand domains involved in Ca2+ binding were present in ent in lipid accumulation, while RNAi of LdCaM led to lethality.Wolfram syndrome (WFS) is a rare autosomal recessive disorder characterized by diabetes mellitus and insipidus, progressive optic atrophy and sensorineural deafness. An increased incidence of psychiatric disorders has also been reported in WFS patients. There are two subtypes of WFS. Doxycycline Hyclate Type 1 (WFS1) is caused by mutations in the WFS1 gene and type 2 (WFS2) results from mutations in the CISD2 gene. Existing Wfs1 knockout mice exhibit many WFS1 cardinal symptoms including diabetic nephropathy, metabolic disruptions and optic atrophy. Far fewer studies have examined loss of Cisd2 function in mice. We identified B6.DDY-Cisd2m1Lmt, a mouse model with a spontaneous mutation in the Cisd2 gene. B6.DDY-Cisd2m1Lmt mice were initially identified based on the presence of audible sonic vocalizations as well as decreased body size and weight compared to unaffected wildtype littermates. Although Wfs1 knockout mice have been characterized for numerous behavioral phenotypes, similar studies have been lacking for Cisd2 mutant mice. We tested B6.DDY-Cisd2m1Lmt mice in a battery of behavioral assays that model phenotypes related to neurological and psychiatric disorders including anxiety, sensorimotor gating, stress response, social interaction and learning and memory. B6.DDY-Cisd2m1Lmt mice displayed hypoactivity across several behavioral tests, exhibited increased stress response and had deficits in spatial learning and memory and sensorimotor gating compared to wildtype littermates. Our data indicate that the B6.DDY-Cisd2m1Lmt mouse strain is a useful model to investigate potential mechanisms underlying the neurological and psychiatric symptoms observed in WFS.Chronic alcoholism often causes liver injuries characterized by hepatic steatosis, inflammation as well as oxidative stress and finally leads to advanced cirrhosis and liver cancer. Fas-activated serine/threonine kinase (FASTK) and its homologs are gradually known as multifunctional proteins involved in various biological processes; however, the role of FASTK and its family members in alcoholic liver disease (ALD) is still unexplored. Here we found that, among FASTK family members, the expression of FASTK was specifically induced both in livers of mice received chronic ethanol ingestion and in ethanol-stimulated hepatocytes. Animal studies showed that genetic deletion of FASTK attenuated chronic ethanol ingestion-induced liver damage, steatosis, and inflammation. Moreover, FASTK deficiency was associated with improved oxidative/anti-oxidative system homeostasis and reduced reactive oxygen species (ROS) generation in livers upon chronic ethanol stimulation. Importantly, FASTK ablation preserved hepatic sirtuin-1 (SIRT1) expression/activity upon chronic ethanol ingestion and SIRT1 silencing via adenovirus-mediated small interfering RNA transfer diminished FASTK deletion-elicited beneficial effects on alcohol-associated hepatic steatosis, inflammation, and oxidative stress. Mechanistically, ethanol increased the phosphorylation of human antigen R (HuR, a RNA binding protein that stabilizes SIRT1 mRNA) and triggered the dissociation of HuR-SIRT1 mRNA complex, in turn promoting SIRT1 mRNA decay. Genetic deletion of FASTK diminished ethanol-induced HuR phosphorylation and HuR-SIRT1 mRNA complex dissociation, thereby enhancing SIRT1 mRNA stability. Collectively, these findings for the first time highlight a critical role of FASTK in the pathogenesis of ALD and implicate HuR-SIRT1 mRNA complex involves in this process.Soil salinity is one of the critical issue worldwide that adversely affect soil fertility. Salt stress significantly limits crop yield and grain quality; therefore, there is an urgent need to develop a strategy to improve salt stress tolerance. In present study, we reported that rice glutaredoxin (OsGrx_C7) plays a positive response in salt induced stress. Gene expression analysis, silencing, and overexpression of OsGrx_C7 gene were used to discover the role of OsGrx_C7 in response to salt stress. Gene expression analysis suggested that OsGrx_C7 expression was induced under salt stress and ubiquitously expressed in rice including root and shoot. The silencing of osgrx_c7 gene leads to increased sensitivity to salt stress, indicating its importance in salt stress tolerance. A gain-of-function approach showed that OsGrx_C7 may act as an important determinant in salt stress, compared with WT, and revealed higher biomass accumulation, improved root and plant growth under salt stress. Under salt stress condition, OsGrx_C7 overexpressing rice plants showed lower level of lipid peroxidation and Na+/K+ ratio, while proline accumulation, soluble sugar content and GSH/GSSG ratio was higher compared to WT. Furthermore, expression analysis suggested that OsGrx_C7 acted as positive regulator of salt tolerance by reinforcing the expression of transporters (OsHKT2;1, OsHKT1;5 and OsSOS1) engaged in Na+ homeostasis in overexpressing plants. Overall our study revealed that OsGrx_C7 emerged as a key mediator in response to salt stress in rice and could be used for engineering tolerance against salt stress in rice and other crops.