Huffmangreer5834
1%BW at 1 MeV, which may have diverse applications in various fields.For a Si-based all-optical spatial terahertz modulator (STM), an enhanced modulation efficiency under low illumination density would be of great significance to exploit the competence of THz technology in real-world applications. We presented here an implementation of such a device by microtexturing and passivating the Si surface, forming a truncated pyramidal array (TPA). This TPA structure with SiO2 passivating coatings not only decreases light reflectance and expands the active area for THz modulation but also remarkably increases the photogenerated carrier lifetime. These 3-fold benefits render Si-TPA superior to bare-Si with respect to the achievable modulation efficiency, especially at low irradiation power. Furthermore such a Si-TPA device is also more applicable than its counterpart that is only passivated by SiO2 nanocoatings, even though the Si-SiO2 has a slightly increased modulation efficiency. These periodically aligned pyramids resembled as a mesa array significantly suppress the lateral diffusion induced by longer diffusion, resulting in an equivalent resolution of bare-Si. This novel Si-TPA based STM is highly desired for realizing a high-performance THz imager and provides a feasible approach to breaking the trade-off between resolution and modulation efficiency.In this study, we have developed a simultaneous grating spectroscopy using a broadband IR laser source capable of detecting moving targets in real time. The broadband IR laser source operated in pulsed mode provides a broad spectral range, which covers absorption bands of many chemical analytes. The laser operating conditions were optimized to cover the broadest wavelength range spanning spectral features for the analytes of interest, based on a detailed understanding of the broadband source. This measured the signal from two samples, a 1% acetaminophen KBr pellet sample and toluene in a gas cell. These samples were characterized by illuminating them with the IR broadband source and collecting the transmitted or reflected signal through a grating spectrometer and onto an IR focal plane array (FPA). The results clearly show discrete peaks comparable to the FTIR reference spectra and the spectral features of the samples were successfully discriminated. We believe that the proof of concepts presented here are of broad applicability and will aid advanced real-time standoff detection research.In the present study, a nanoparticle-multilayer metal film substrate was presented with silver nanoparticles (Ag NPs) assembled on a multilayer gold (Au) film by employing alumina (Al2O3) as a spacer. HDAC inhibitor The SERS performance of the proposed structures was determined. It was suggested that the SERS effect was improved with the increase in the number of layers, which was saturated at four layers. The SERS performance of the structures resulted from the mutual coupling of multiple plasmon modes [localized surface plasmons (LSPs), surface plasmon polaritons (SPPs), as well as bulk plasmon polaritons (BPPs)] generated by the Ag NP-multilayer Au film structure. Furthermore, the electric field distribution of the hybrid system was studied with COMSOL Multiphysics software, which changed in almost consistency with the experimentally achieved results. For this substrate, the limit of detection (LOD) was down to 10-13 M for the rhodamine 6G (R6G), and the proposed SERS substrate was exhibited prominently quantitatively detected capability and high reproducibility. Moreover, a highly sensitive detection was conducted on toluidine blue (TB) molecules. As revealed from the present study, the Ag NP-multilayer Au film structure can act as a dependable SERS substrate for its sensitive molecular sensing applications in the medical field.GaTe nanoflakes have been receiving much research attention recently due to their applications in optoelectronic devices, such as anisotropic non-volatile memory, solar cells, and high-sensitivity photodetectors from the ultraviolet to the visible region. Further applications, however, have been impeded due to the limited understanding of their exciton dynamics. In this work we perform temperature- and power-dependent time-resolved photoluminescence (PL) spectra to comprehensively investigate the exciton dynamics of GaTe nanoflakes. Temperature-dependent PL measurements manifest that spectral profiles of GaTe nanoflakes change dramatically from cryogenic to room temperature, where the bound exciton and donor-to-acceptor pair transition normally disappear above 100 K, while the charged exciton survives to room temperature. The lifetimes of these excitons and their evolution vs temperature have been uncovered by time-resolved PL spectra. Further measurements reveal the entirely different power-dependent exciton behaviors of GaTe nanoflakes between room and cryogenic temperatures. The underlying mechanisms have been proposed to explore the sophisticated exciton dynamics within GaTe nanoflakes. Our results offer a more thorough understanding of the exciton dynamics of GaTe nanoflakes, enabling further progress in engineering GaTe-based applications, such as photodetectors, light-emitting diodes, and nanoelectronics.We propose a radar-infrared bi-stealth rasorber that not only provides broad microwave absorptivity and low infrared emissivity but also possesses a microwave transmission window at low frequency. It is composed of three functional layers, which are carefully designed to independently control the infrared emission, microwave absorption, and transmission, respectively. The structure exhibits broadband (8.1-19.3 GHz) and high-efficiency (>90%) absorption. A transmission window appears at low frequency with a transmission peak of 80% at 2.68 GHz. The thermal emissivity of the structure is about 0.27 in the atmosphere window, which is close to that of metal. Moreover, the total thickness of the proposed structure is only 3.713 mm. The low-infrared-emissivity, high-microwave-absorption and frequency-selective-transmission properties promise it will find potential applications in various stealth fields.