Hubermcpherson9603
Targeted delivery of chemotherapeutics to tumors has the potential to reach a high dose at the tumor while minimizing systemic exposure. Incorporation of antibody within a micellar platform represents a drug delivery system for tumor-targeted delivery of antitumor agents. Such modified immunomicelles can result in an increased accumulation of antitumor agents and enhanced cytotoxicity toward cancer cells. Here, mixed dendrimer micelles (MDM) composed of PEG2k-DOPE-conjugated generation 4 polyamidoamine dendrimer G4-PAMAM-PEG2k-DOPE and PEG5k-DOPE were coloaded with doxorubicin and siMDR-1. This formulation was further modified with monoclonal antibodies 2C5 with nucleosome-restricted specificity that effectively recognized cancer cells via the cell-surface-bound nucleosomes. Micelles with attached 2C5 antibodies significantly enhanced cellular association and tumor killing in both monolayer and spheroid tumor models as well as in vivo in experimental animals compared to the nontargeted formulations.We experimentally investigate the ultrafast photodissociation dynamics of the SO2 molecule induced by intense ultrashort laser pulses in a pump-probe scheme. Different three-body fragmentation pathways are discriminated using the time-dependent kinetic energy release spectrum with femtosecond time resolution. A nontrivial three-body fragmentation pathway, denoted as the bonding pathway, is unraveled, in which an intermediate fast rotating O2 molecule is formed before complete fragmentation. The ultrafast chemical bond rearrangement after electron release is tracked in real time. The bonding pathway generally exists in the three-body fragmentation processes induced by strong laser fields of different wavelengths, which is observed in infrared, ultraviolet, and mixed two-color cases. Our findings are significant for understanding the photon-induced ultrafast processes of the SO2 molecule in atmospheric chemistry.Herein, we report the iron-catalyzed borylation of aryl ethers and aryl amines via cleavage of C-O and C-N bonds. This protocol does not require the use of Grignard reagents and displays a broad substrate scope, which allows the late-stage borylation. It also provides facile access to multisubstituted arenes through C-H functionalization using 2-pyridyloxy as the directing group.An enantioselective cyclization of diazoindolinones with o-hydroxymethyl chalcones has been established by a cooperative dirhodium complex and chiral phosphonic acid catalysis under mild conditions. This reaction is the first example of catalytic asymmetric intramolecular Michael-type trapping of oxonium ylide enabled by phosphoric acid through a dual H-bonding activation model, which provides an efficient access to the chiral spirochroman-3,3-oxindoles, with vicinal quaternary and tertiary stereocenters, in good to excellent yields and enantioselectivities.The wavelength-tunable interlayer exciton (IE) from layered semiconductor materials has not been achieved. van der Waals heterobilayers constructed using single-layer transition metal dichalcogenides can produce continuously changed interlayer band gaps, which is a feasible approach to achieve tunable IEs. In this work, we design a series of van der Waals heterostructures composed of a WSe2 layer with a fixed band gap and another WS2(1-x)Se2x alloy layer with continuously changed band gaps. The existence of IEs and tunable interlayer band gaps in these heterobilayers is verified by steady-state photoluminescence experiments. By tuning the composition of the WS2(1-x)Se2x alloy layers, we realized a very wide tunable band gap range of 1.97-1.40 eV with a wavelength-tunable IE emission range of 1.52-1.40 eV from the heterobilayers. The time-resolved photoluminescence experiments show the IE emission lifetimes over nanoseconds.The structure of electrical double layers at electrified interfaces is of utmost importance for electrochemical energy storage as well as printable, flexible, and bioelectronic devices, such as ion-gated transistors (IGTs). Here we report a study based on atomic force microscopy force-distance profiling on electrical double layers forming at the interface between the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and sol-gel films of mesoporous tungsten oxide. We successfully followed, under in operando conditions, the evolution of the arrangement of the ions at the interface with the tungsten oxide films used as channel materials in IGTs. Our work sheds light on the mechanism of operation of IGTs, thus offering the possibility of optimizing their performance.Polymeric micellar nanoparticles represent versatile and biocompatible platforms for targeted drug delivery. However, tracking their biodistribution, stability, and clearance profile in vivo is challenging. The goal of this study was to prepare surface-modified micelles with peptide GE11 for targeting the epidermal growth factor receptor (EGFR). In vitro fluorescence studies demonstrated significantly higher internalization of GE11 micelles into EGFR-expressing HCT116 colon cancer cells versus EGFR-negative SW620 cells. Tyrphostin B42 Azo coupling chemistry of tyrosine residues in the peptide backbone with aryl diazonium salts was used to label the micelles with radionuclide 64Cu for positron emission tomography (PET) imaging. In vivo analysis of 64Cu-labeled micelles showed prolonged blood circulation and predominant hepatobiliary clearance. The biodistribution profile of EGFR-targeting GE11 micelles was compared with nontargeting HW12 micelles in HCT116 tumor-bearing mice. PET revealed increasing tumor-to-muscle ratios for both micelles over 48 h. Accumulation of GE11-containing micelles in HCT116 tumors was higher compared to HW12-decorated micelles. Our data suggest that the efficacy of image-guided therapies with micellar nanoparticles could be enhanced by active targeting, as demonstrated with cancer biomarker EGFR.Electrochemical exfoliation is one of the most promising methods for scalable production of graphene. However, limited understanding of its Raman spectrum as well as lack of measurement standards for graphene strongly limit its industrial applications. In this work, we show a systematic study of the Raman spectrum of electrochemically exfoliated graphene, produced using different electrolytes and types of solvents in varying amounts. We demonstrate that no information on the thickness can be extracted from the shape of the 2D peak as this type of graphene is defective. Furthermore, the number of defects and the uniformity of the samples strongly depend on the experimental conditions, including postprocessing. Under specific conditions, the formation of short conductive trans-polyacetylene chains has been observed. Our Raman analysis provides guidance for the community on how to get information on defects coming from electrolyte, temperature, and other experimental conditions, by making Raman spectroscopy a powerful metrology tool.