Hsuraahauge8707
We conducted a prospective, observational study at the Adult CF Center, Ospedale Policlinico, Milano, Italy, from March 2017 to September 2019 to assess the prevalence and serotypes of Streptococcus pneumoniae (SP) in adults with CF naive to pneumococcal vaccination. Spontaneous sputum samples from 129 patients were analyzed for SP DNA and serotyped. SP was found in 24 subjects (19%) and the most common serotypes were 19F (16%), 4 (6%), and 9VA (3%). Higher FEV1 and non-pseudomonas infection significantly associate with SP on sputum. These results define a subgroup of patients that might deserve implementation of microbiological techniques directed to pneumococcal detection.Nitric oxide (NO), the highly reactive radical gas, provides an attractive strategy in the control of microbial infections. NO not only exhibits bactericidal effect at high concentrations but also prevents bacterial attachment and disperses biofilms at low, nontoxic concentrations, rendering bacteria less tolerant to antibiotic treatment. The endogenously generated NO by airway epithelium in healthy populations significantly contributes to the eradication of invading pathogens. However, this pathway is often compromised in patients suffering from chronic lung infections where biofilms dominate. Thus, exogenous supplementation of NO is suggested to improve the therapeutic outcomes of these infectious diseases. Compared to previous reviews focusing on the mechanism of NO-mediated biofilm inhibition, this review explores the applications of NO for inhibiting biofilms in chronic lung infections. It discusses how abnormal levels of NO in the airways contribute to chronic infections in cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), and primary ciliary dyskinesia (PCD) patients and why exogenous NO can be a promising antibiofilm strategy in clinical settings, as well as current and potential in vivo NO delivery methods. KEY POINTS • The relationship between abnormal NO levels and biofilm development in lungs • The antibiofilm property of NO and current applications in lungs • Potential NO delivery methods and research directions in the future.The food industry has developed a wide range of products with reduced lactose to allow people with intolerance to consume dairy products. Although β-galactosidase has extensive applications in the food, pharma, and biotechnology industries, the enzymes are high-cost catalysts, and their use makes the process costly. Immobilization is a viable strategy for enzyme retention inside a reactor, allowing its reuse and application in continuous processes. Here, we studied the immobilization of β-galactosidase from Bacillus licheniformis in ion exchange resin. A central composite rotational design (CCRD) was proposed to evaluate the immobilization process in relation to three immobilization solution variables offered enzyme activity, ionic strength, and pH. The conditions that maximized the response were offered enzyme activity of 953 U, 40 mM ionic strength, and pH 4.0. Subsequently, experiments were performed to provide additional stabilization for biocatalyst, using a buffer solution pH 9.0 at 25 °C for 24 h, and crosslinking with different concentrations of glutaraldehyde. The stabilization step drastically impacted the activity of the immobilized enzyme, and the reticulation with different concentrations of glutaraldehyde showed significant influence on the activity of the immobilized enzyme. In spite of substantially affecting the initial activity of the immobilized enzyme, higher reagent concentrations (3.5 g L-1) were effective for maintaining stability related to the number of cycles of the enzyme immobilized. The β-galactosidase from Bacillus licheniformis immobilized in Duolite A568 is a promising technique to produce reduced or lactose-free dairy products, as it allows reuse of the biocatalyst, decreasing operational costs.Key Points• Immobilization of β-galactosidase from Bacillus licheniformis in batch reactor• Influence of buffer pH and ionic concentration and offered enzyme activity on immobilization• Influence of glutaraldehyde on operational stability.In biopharmaceutical production, Chinese hamster ovary (CHO) cells derived from Cricetulus griseus remain the most commonly used host cell for recombinant protein production, especially antibodies. Over the last decade, in-depth multi-omics characterization of these CHO cells provided data for extensive cell line engineering and corresponding increases in productivity. However, exosomes, extracellular vesicles containing proteins and nucleic acids, are barely researched at all in CHO cells. Exosomes have been proven to be a ubiquitous mediator of intercellular communication and are proposed as new biopharmaceutical format for drug delivery, indicator reflecting host cell condition and anti-apoptotic factor in spent media. Here we provide a brief overview of different separation techniques and subsequently perform a proteome and regulatory, non-coding RNA analysis of exosomes, derived from lab-scale bioreactor cultivations of a CHO-K1 cell line, to lay out reference data for further research in the field. Bafilomycin A1 clinical trial Applying bottom-up orbitrap shotgun proteomics and next-generation small RNA sequencing, we detected 1395 proteins, 144 micro RNA (miRNA), and 914 PIWI-interacting RNA (piRNA) species differentially across the phases of a batch cultivation process. The exosomal proteome and RNA data are compared with other extracellular fractions and cell lysate, yielding several significantly exosome-enriched species. Graphical Abstract KEY POINTS • First-time comprehensive protein and miRNA characterization of CHO exosomes. • Isolation protocol and time point of bioprocess strongly affect quality of extracellular vesicles. • CHO-derived exosomes also contain numerous piRNA species of yet unknown function.As China assumes a more and more dominant role in global science, this mini-review attempts to provide a bird's eye view on how the bio-digital revolution impacts China's biosciences and bioindustry. Triggered by top-down political programs and the buildup of an impressive infrastructure in science, information technology, and education, China's biomedical and MedTech industries prosper. Plant and animal breeding programs transform agriculture and food supply as much as the Internet of things, and synthetic biology offers new opportunities for the manufacturing of specialty chemicals within the Chinese version of a "bioeconomy." It is already becoming apparent that the new five-year period "145" (2021-2025) will further emphasize emission control, bioenvironmental protection, and more supply of biomass-derived energy. This review identifies key drivers in China's government, industry, and academia behind these developments and details many access points for deeper studies. KEY POINTS Biotechnology in China Biomedical technology New five-year period.